# A REALISTIC VISION OF THE MARS EXPEDITION: HOW MANY PEOPLE MUST GO?

Lynn Baroff Olga Bannova

## Outline

- The number of people and competencies required for the three-year Mars trip;
- People and systems requirements at the destination;
- Interpersonal dynamics and their effect on space ship habitability;
- Architectural considerations.

# Exploration

#### Investments and resources



**Great Silk Road** 

Lynn Baroff
Olga Bannova

# Exploration

Investments and resources: relationships and outcomes



Lynn Baroff Olga Bannova

## Exploration

### Historical overview and comparison

| Aspects                                       | Earth Exploration (historical)                                                   | Space Exploration (up to now)                                              | Space Exploration (future)                                                        |
|-----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Level of expectancy                           | Not really known/some<br>limited knowledge                                       | Initially very limited,<br>now high level of<br>knowledge                  | Some information is available but high level of unknown                           |
| Mission timeframe                             | Several months up to years                                                       | Days, up to more than a year on orbit                                      | Several years                                                                     |
| Potential danger,<br>hazards &<br>challenges  | Deceases, natural risks,<br>lack of familiar<br>resources & tools                | 100% dependency on supplies from Earth                                     | Maximize ISRU & independence from supplies from Earth                             |
| Diversity:     Social     Cultural     Gender | <ul><li>Similar social class</li><li>Mixed/mission based</li><li>Mixed</li></ul> | <ul><li>No diversity</li><li>Some diversity</li><li>Very limited</li></ul> | <ul><li>Mission based (e.g. client-service)</li><li>Mixed</li><li>Mixed</li></ul> |

Lynn Baroff Olga Bannova

## Who must take the trip

#### Mission support disciplines at minimum:

- Aerospace engineering
- Electrical engineering
- Computer science and software engineering
- Thermal engineering
- Material science

- Telecommunications
- Optics
- Navigation and control systems engineering
- Instrumentation
- Radar science

## Who must take the trip

Necessity for additional disciplines will depend on crew members' and mission objectives' diversity.

| Some mission objectives & support | Required specialties  Geology, geophysics, chemistry, physics, astronomy, astrophysics, meteorology, hydrology, biology |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Extended science                  |                                                                                                                         |  |
| Surface exploration               | Electrical, thermal and mechanical engineering, telecommunications, navigation                                          |  |
| Medical care                      | ObGyn, orthopedic or surgical, dental.                                                                                  |  |
| Lynn Baroff C                     | CSC, NASA Ames Research Center, Mountain View, USA                                                                      |  |
| Olga Bannova                      | SICSA, CoA, University of Houston, Houston, USA                                                                         |  |

# How many must go

Number of cross-trained personnel will depend on a number of inhabitants and their occupational range.

Interdependence between number of occupants and personnel training



Lynn Baroff
Olga Bannova

# How many must go

#### Crew number selection influencing factors:

- Quantity of mission goals and objectives;
- List of functions to be performed during the mission;
- Level of expected/required work quality;
- The number of crew needed to complete the function;
- Crew morale support during long-term Mars missions.

## The architectures

#### Main architectural objectives:

- Provide protection means from external environmental risks;
- Afford internal safety (fire hazards, any type of contamination etc.);
- Ensure health safety (physical and psychological);
- Optimize interior environment arrangements to maximize crew work performance.

## The architectures

#### Operational design considerations:

- Human factors;
- Crew systems and subsystems;
- Man machine interactions;
- Functions allocations.





Lynn Baroff
Olga Bannova

## The architectures

#### Assembly considerations:

- Ship systems and subsystems integration;
- Propulsion systems;
- Launch systems;
- Interfaces.

#### Minimum Energy Mars Trip



## Conclusions

Making the *real* needs be commonly known, and explaining how current and projected future technologies will contribute to satisfying those needs, can help build appreciation and understanding of the long-term commitment required to explore our solar system.