

Artificial Gravity Studies on Board the DSH

Artificial Gravity Study Kickoff Meeting

NASA Johnson Space Center Building 15/Room 267

Gilles Clement

30 Jan 2017

Artificial Gravity (AG) Potential Benefits

- Better to <u>prevent</u> issues rather than to apply countermeasures after the fact.
- AG produces multi-system effects.
- AG is a potential countermeasure for VIIP (Visual Impairment Intracranial Pressure) syndrome.
- AG reduces countermeasure requirements after landing on planetary surface.
- Rehabilitation starts 6 months earlier than a non-AG mission, and is complete when crew returns to Earth.

NASA HRP – Human Risks of Spaceflight

Grouped by Hazards – 30 Risks & 2 Concerns

Altered Gravity Level

- Vision alterations
- Renal stone formation
- Sensorimotor alterations
- Bone fracture
- Impaired performance
- Reduced aerobic capacity
- Adverse hostmicroorganism interactions
- Urinary retention
- Orthostatic intolerance
- Back pain
- Cardiac rhythm problems
- Effects of medication
- Intervertebral disk damage

Radiation

• Exposure to space radiation

Distance from Earth

- Limited in-flight medical capabilities
- Toxic medications

Isolation

- Adverse cognitive or behavioral conditions
- Performance & behavioral health decrements

Hostile/Closed Environment– Spacecraft Design

- CO2 exposure
- Inadequate food/nutrition
- Inadequate human-system interaction design
- Injury from dynamic loads
- Injury during EVA
- Celestial dust exposure
- Altered immune response
- Hypobaric hypoxia
- Sleep loss & work overload
- Decompression sickness
- Toxic exposure
- Hearing loss
- Sunlight exposure

Risks potentially minimized by artificial gravity

Why Has AG Never Been Implemented ?

- Lack of definitive design requirements, especially acceptable AG levels and rotation rates.
- Perception of high vehicle mass and performance penalties.
- Expectation of effective crew microgravity countermeasures.
- Space research focus on microgravity, not partial gravity.

ROCKY – Aerobic activity and strength training developed for Orion.

HRP Artificial Gravity Project

Goal

Determine the design trade space associated with AG for Mars missions vehicles and habitats.

Objectives

- Implement an evidence-based, peer-reviewed, coordinated R&D project to investigate AG.
- Determine the optimal design characteristics for an AG countermeasure.

Milestone

 Criteria for deciding whether AG can protect crew health and performance during human deep space missions are expected NET 2022.

Human Health and

Countermeasures Element

EM/DEM: Baumann/Villarreal ES/DES: Norsk/Barr ESC: K. George

	CARDIOVASCULAR AND VISION PORTFOLIO <i>Allcorn</i>		EXERCISE AND PERFORMANCE PORTFOLIO <i>H. Paul</i>		MULTISYSTEN Ploe	M PORTFOLIO eger	TECHNOLOGY AND INFRASTRUCTURE PROJECTS PORTFOLIO Baumann
	Cardiovascular Stenger/S. Lee		Exercise Ryder/Downs		Inadequate Nutrition S. Smith/Zwart	Advanced Food Douglas	Digital Astronaut Gilkey/
Allcorn (acting)	Cardiac Rhythm Problems Orthostatic Intolerance Micro-Gravity	PSC : K. George	Impaired perf due to reduced muscle mass, strength and endurance Reduced physical perf capability due	PSC: K. George	PK/PD concern Vacant Immune Response Crucian/Kunz	MicroHost Oubre/Ott	Lewandowski Exploration Exercise Haven/Perusek DeWitt/Lewandowski
PSC :	Alterations/ICP Stenger/Laurie	SC : Taylor	aerobic capacity Sensory Motor Alterations <i>Bloomberg</i>		EVA Abercromby/Norcross DCS		Translational Research ARC/Alwood JSC/Wu
	Countermeasure Clement	mith	Bone Sibonga		EVA Health & Performance ExpAtm		
		PSC: S. S	Early onset osteoporosis IVD concern				

6

Rotation of the whole vehicle e.g. Mars NTR r = 56 m $\omega = 4 rpm$

Rotation of part of the vehicle e.g. Nautilus-X r = 6 m $\omega = 12 rpm$

Onboard centrifuge e.g. AGREE r = 1.6 m $\omega = 42 rpm (1 g at heart)$

Physics of Centrifugation

- AG = $(\omega_{veh})^2$ r
- Linear translation (v) of the whole body or body parts along an axis that is not parallel to the spin axis will create a Coriolis force:

-2m(ω_v

 Angular movements (ω_{body}) of the head that is not parallel to the spin axis will create crosscoupled accelerations:

 ω_{body}

Lackner & Dizio (2000)

Coriolis Force – Principle

Coriolis Force during Locomotion

RW Stone (1973) An Overview of Artificial Gravity. NASA SP-314

Vestibular Organs

Lackner & DiZio (2005)

Cross-Coupled Angular Accelerations

When a subject tilts his head forward during passive yaw constant-velocity rotation :

- The yaw semicircular canals are brought out of the plane of rotation, and receive an angular velocity impulse.
- The pitch semicircular canals are stimulated by head pitch.
- The roll vertical semicircular canals are brought into the plane of rotation, and receive an angular velocity impulse.
- The otolith organs are stimulated by radial (centripetal) and tangential (Coriolis) linear accelerations, and signal a reorientation of the head in relation to the gravito-inertial vertical.

Cross-Coupled Angular Accelerations

Fig. 4. A: Diagram showing the coordinate system of a triaxial angular rate sensor recording a movement in which the subject nods the head forward and returns immediately to the upright position (dashed arrows). B: Traces from the angular rate sensors when the head movement is made in a normal stationary environment. C: Traces recorded from a comparable pitch movement during 10 rpm counterclockwise rotation. Prior to the movement, the yaw axis of the head is rotating at the same speed as the room; pitching the head forward reduces the portion of the room rotation picked up by the yaw sensor, and returning to the upright restores it. The head roll axis sensor comes into the room rotation plane during pitch forward. The semicircular canals, which are also fixed to the head, will pick up these cross-coupled angular accelerations.

Gravity Gradient

Gravity Gradient

SR Centrifugation in Space

Adaptation to Rotating

- Rotation studies (Graybiel 1960-1965)
 - Slow rotating room (SRR) 2.3-m radius
 - SRR accelerated from rest to 1, 1.71, 2,
 2.21, 3.82, 5.44, 7.5 & 10 rpm (single-step)

- Below 3.82 rpm adaptation took place in minutes.
- At 3.82 rpm adaptation took place in hours.
- At 5.44 and 7.5 rpm all subjects were <u>partially</u> incapacitated by motion sickness, disruption of movement control, and fatigue. Consequently, they greatly reduced their movement and spent much time sleeping.
- At 10 rpm all subjects were <u>severely</u> incapacitated by motion sickness and fatigue, and never were able to make normal head and body movements.
- On the basis of these studies it is often claimed that rotation rate for AG should be **4 rpm or below**.

Adaptation to Rotating Environments (cont'd)

• SRR studies in the 1960s:

- Were preliminary and involved a total of only 30 subjects
- Did not attempt to identify optimum exposure and training strategies to adapt people to rotating environments
- Since then, it was found that:
 - No motion sickness is experienced when rotation rate is achieved incrementally, e.g. in 1-rpm steps or more (Graybiel & Knepton 1978; Young et al. 2001)
 - Motion sickness decreases after repeated exposure to cross-coupled accelerations (Clément et al. 2001)
 - Adaptation of arm, leg, and head movement control to rotation rates of 10 rpm and higher (Lackner & Dizio 2000)

Adaptation to Rotating Environments (cont'd)

- Concern #1: Whether the responses to Coriolis and crosscoupled accelerations and the ability to achieve adaptation will be the same in 0 g as in 1 g
 - Skylab M-131 found that head movements made during rotation failed to induced motion sickness on orbit
 - In parabolic flight, side effects are more severe at 2 g and less intense at 0 g than in 1 g.
 - In parabolic flight, deviation of movement path similar at 0 g, 1 g, and 2 g.

Skylab Experiment M131

Graybiel A, Miller EF, Homick JL (1977) Experiment M131. Human vestibular function. In: Johnston RS, Dietlein LF (eds) Biomedical Results from Skylab. NASA: Washington DC, NASA SP-377, pp 74-103

Adaptation to Rotating Environments (cont'd)

- Concern #2: Whether adaptation to SRR on Earth, where AG is almost parallel to rotation axis, will transfer to rotation of a space vehicle, where AG will be orthogonal to the spin axis :
 - Body movements made from a starting posture parallel vs. orthogonal to the spin axis generate different Coriolis and cross-coupled accelerations
 - Motion sickness adaptation transferred between body orienta
 al. 1968)

Model – some validation required

AG with Humans – What Do We Know ?

- Artificial gravity was first tested on humans in space in 1966 during the Gemini-11 flight
 - The spacecraft was tethered to an Agena target vehicle by a long Dacron line, causing the two vehicles to spin slowly around each other (r = 200 m, ω < 1 rpm, AG < 0.001 g)
 - According to the Gemini commander, a TV camera fell "down" in the direction of the centrifugal force, but the crew did not perceive any changes

What Do We Know? (cont'd)

- Vestibular investigations on board STS-42 (IML-1, 1992)
 - NASA Spacelab Rotator –
 PI: M Reschke (NASA)
 - Axis of rotation aligned with subject's center of mass.
 Head and feet were offcenter by about 0.6 m
 - Rotation at 20 rpm for one minute generated a centripetal acceleration of 0.22 g
 - +Gz at the feet
 - –Gz at the head

NASA Spacelab Rotator

What Do We Know? (cont'd)

- Vestibular investigations on board STS-90 (Neurolab, 1998)
 - ESA Off-Axis Rotator –
 PI: G Clément (CNRS)
 - Gy centrifugation Subject off-center by 0.5 m
 - Gz centrifugation Axis of rotation aligned with subject's center of mass (r = 0.65 m)
 - Rotation at 42 rpm for 7 min generated +1.0 Gy (body)
 - Rotation at 37 rpm for 7 min generated +1.0 Gz at feet and -1.0 Gz at head

ESA Off-Axis Rotator

AG Research Approach

- "G dose-physiological response" curve
 - Acute studies rats (suspension) & humans (parabolic flight, unloading)
 - Chronic studies mice (JAXA ISS centrifuge)
- Duration of AG exposure
 - Continuous rats (ground-based centrifuge)
 - Continuous mice (JAXA ISS centrifuge)
 - Intermittent humans (bed rest)
- Health consequences of AG
 - Cross-coupled and Coriolis accelerations (SRR)
 - Gravity gradient (large-radius centrifuge)
 - Combination with exercise
- Validation of AG prescription in orbit
 - Models
 - Comparison between ground and on-orbit AG prescription mice
 - Flight AG demonstration with humans HTV-X
 - Flight AG validation with humans DSH

HRP AG Research Plan (Jan 2017)

				2017		2018	2019		2020			2021			2022			202	3 2024				> 2024			
Objective	Platform	Task	1	2	3 4	1 2 3 4	4 1	234	1	2 3	4	1 2	2 3	4 1	2	3 4	1 1	2	3 4	11	2 3	3 4	1	2 3	34	
AG Level	Earth	G dose-response in rodents during SRC												Τ						Τ						
	Analogs	G dose-response using computational models															Τ									
		G dose-response in rats during suspension																								
		G dose-response in humans during suspension																								
		G dose-response in humans during water immersion																								
		G dose-response in humans during head-up tilt (HUT)																								
		G dose-response in humans during parabolic flight																								
	ISS	G dose-response in mice using MHU on board the ISS																								
		G dose-response in rats using RCF on board the ISS																								
Mars Gravity	Earth	Martian gravity in humans during body unloading																								
		Martian gravity in humans during HUT bed rest																								
		Martian gravity in returning ISS crew during HUT																								
	ISS	Martian gravity in rats using RCF on board the ISS																								
AG Duration	Earth	Intermittent rotation in rats after SRC on Earth																								
		Intermittent rotation in humans during HDT bed rest																								
		Continuous rotation in humans in live-aboard habitat																								
	ISS	Intermittent rotation in rats on board the ISS																								
Health	Earth	Health consequences of gravity gradient in LRC																								
		Effects of centrifugation on ICP in healthy subjects																								
		Effects of centrifugation on ICP in analog VIIP patients																								
		Health consequences of Coriolis and CCA in SRR																								
Validation	Earth	Requirements for AG studies on board the DSH																								
		Ground-based studies using the DSH centrifuge																								
	ISS	Effectiveness of the AG prescription in rats on the ISS																								
	HTV-X	Human short-radius centrifuge on space operations																								
	DSH	Short-term effects of AG prescription in humans in orbit																								
						NRA Jun	201	15					NR	A A	pr 2	2017	7									
						NRA Oct	201	15					Pla	nne	d											

HRP AG Research Plan (Jan 2017)

				2017		2018		2019	2020			2	021		2022			20	23	3 2024				> 2024			
Objective	Platform	Task	1	2	3 4	1 2 3 4	4 1	234	1	23	4	1 2	2 3	4	1 2	3	4 1	2	3	4	1 2	3 4	ł 1	2	3	4	
AG Level	Earth	G dose-response in rodents during SRC																					Τ				
	Analogs	G dose-response using computational models																								_	
		G dose-response in rats during suspension																									
		G dose-response in humans during suspension																									
		G dose-response in humans during water immersion																									
		G dose-response in humans during head-up tilt (HUT)																									
		G dose-response in humans during parabolic flight																									
	ISS	G dose-response in mice using MHU on board the ISS																									
		G dose-response in rats using RCF on board the ISS																									
Mars Gravity	Earth	Martian gravity in humans during body unloading																									
		Martian gravity in humans during HUT bed rest																									
		Martian gravity in returning ISS crew during HUT																									
	ISS	Martian gravity in rats using RCF on board the ISS																									
AG Duration	Earth	Intermittent rotation in rats after SRC on Earth																					Τ				
		Intermittent rotation in humans during HDT bed rest																									
		Continuous rotation in humans in live-aboard habitat																									
	ISS	Intermittent rotation in rats on board the ISS																									
Health	Earth	Health consequences of gravity gradient in LRC																									
		Effects of centrifugation on ICP in healthy subjects																									
		Effects of centrifugation on ICP in analog VIIP patients																									
		Health consequences of Coriolis and CCA in SRR																									
Validation	Earth	Requirements for AG studies on board the DSH																					Τ				
		Ground based studies using the DOH centrifuge																									
	ISS	Effectiveness of the AG prescription in rats on the ISS																									
	HTV-X	Human short-radius centrifuge on space operations																									
	DSH	Short-term effects of AG prescription in humans in orbit																									
						NRA Jun	20	15					NR	A A	pr	201	7		\square				_		\square		
																							_				
						NRA Oct	20	15					Pla	nne	ed				11								

ISS AGREE Project (2011)

ISS AGREE Gravity Gradient

HTV-X Human Centrifuge Project

HTV-X Human Centrifuge Objectives

- Subjective Assessment
 - Crew comfort nominal and max RPM
 - Safety issues
 - Crew time
 - Crew overall acceptance
- Engineering Assessment
 - Loads at interfaces with module/node
 - Vibrations, g jitters, noise
 - Heat load
 - Air flow
- Physiological Assessment AG as a countermeasure
 - Compare CEVIS and centrifuge
 - E.g., CEVIS during first half of Expedition, centrifuge during second half of Expedition (vice-versa with 2nd subject)

Spinning Track

Skylab 2 (1973)

- Radius: 3.3 m
- Rotation rate: 6.5 rpm
 0.15 g at feet

- Radius: 5 m
- Track rotation rate: 6 rpm
- Subject rotation rate: 9 rpm
 - 1 g at center of mass
 - 1.3 g at feet