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1 INTRODUCTION 
The Baseline Values and Assumptions Document (BVAD) provides analysts, modelers, and other life 

support researchers with a common set of values and assumptions which can be used as a baseline in their studies.  
This baseline, in turn, provides a common point of origin from which many studies in the community may depart, 
making research results easier to compare and providing researchers with reasonable values to assume for areas outside 
their experience. With the ability to accurately compare different technologies’ performance for the same function, 
managers will be able to make better decisions regarding technology development. 

 PURPOSE AND PROCESS 

The BVAD identifies specific physical quantities that define life support systems from an analysis and 
modeling perspective.  For each physical quantity so identified, the BVAD provides a nominal or baseline value and 
often provides a range of possible or observed values.  Finally, the BVAD documents each entry with a description of 
the quantity’s use, value selection rationale, and appropriate references.  The baseline values listed in the BVAD are 
designed to provide defaults for those quantities within each study that are not of particular interest for that study and 
may be adequately described by default values. 

Some life support assumptions are well bounded.  For example, the direct solar irradiation for vehicles 
orbiting around Earth’s Moon varies between 1,323 Watts per square meter W/m² and 1,414 W/m² with a mean value 
of 1,367 W/m² (K&K, 1998).  Accordingly, the solar constant at the Moon naturally varies by 91 W/m² (6.7 %).  
Williams (1997) lists a mean value of 1,380 W/m² for the solar constant at the Moon.  While any value from 1,323 
W/m² to 1,414 W/m² may be selected for the solar constant in a study sited in lunar orbit, a mean value of 1,370 W/m² 
may be defined in the BVAD as the baseline solar flux at the Moon.  Consequently, all life support studies would use 
a consistent value of 1,370 W/m² unless they were specifically exploring the effect of varying the solar constant.  Many 
life support assumptions are similarly well bounded.  Others, such as the growth rate for plants, are not well bounded.  
For these types of values, reasonable upper and lower values are given, although other values showing a greater range 
could be used.  Without an agreement, each researcher will generally select his/her baseline values using whatever 
sources are available and/or deemed most accurate.  While values from one researcher to the next may be similar, 
variations in input values lead to further variations in results when one compares studies from multiple sources.  As 
such, it is more difficult to assess the significance of variations in results between studies from different sources 
without conducting additional analyses to bring the multiple studies to a similar baseline. 

Values for this document are taken from a variety of sources.  Many researchers from the modeling and 
analysis community, in addition to the authors, helped to prepare the manuscript as it evolved over many years.  As 
part of the process of assigning values to each of the life support quantities, the writers evaluated and debated entries 
to produce a set of mutually agreeable values with corresponding limits.  Comments from all readers are welcomed 
and encouraged.  To allow the BVAD to maintain its utility as a store of modeling and analysis information, 
the BVAD must be a living document that is updated as necessary to reflect new technology and/or scientific 
discoveries. 

The BVAD has been developed under the auspices of several NASA life support technology development 
programs in its history, and is currently maintained by the Design and Analysis Branch of the Crew and Thermal 
Systems Division at the NASA Johnson Space Center in support of the NASA ECLSS community.  Please send 
comments to: 

 
Molly S. Anderson 
CTSD National Aeronautics and Space Administration 
Lyndon B. Johnson Space Center 
2101 NASA Road One 
Mail Code EC2 
Houston, Texas 77058 
E-mail: molly.s.anderson@nasa.gov 
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 ADVANTAGES 

Aside from the advantages listed above, the BVAD provides several additional benefits: 
1) The BVAD allows the life support analysis community to carefully review and evaluate input study 

assumptions.  Such review will lead to greater confidence in and understanding of the studies' 
results. 

2) Each study can now benefit from the “best” available input values and assumptions by drawing upon 
information collected by a group of researchers instead of a single researcher.  Further, such values 
reflect the combined expertise of the group as a whole rather than one individual.   

3) The BVAD process identifies those quantities that are not well-defined by current information.  Such 
quantities are primary candidates for parametric studies to determine their importance on modeling 
and analysis results.  Further, this approach identifies values that may require additional 
experimental input to adequately quantify. 

4) The BVAD allows researchers from multiple sites to efficiently and quickly compare results from 
multiple studies.  Because each study uses the same baseline, the variations between studies arise 
from differences in models or the parameters varied rather than a complex combined effect that 
includes variations in the assumed baseline. 

5) The BVAD will allow any researcher to conduct a follow-on study or replicate previous work 
because assumptions from each study will be clearly available and carefully recorded.  Further, 
researchers can reference the BVAD for their baseline parameter values except those that are unique 
to their specific study. 
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Henninger, PhD, John A. Hogan, PhD, Jean B. Hunter, PhD, Frank F. Jeng, Harry Jones, PhD, Jitendra Joshi, PhD, 
John M. Keller, PhD, Kevin E. Lange, PhD, Wen-Ching Lee, Julie A. Levri, Sabrina Maxwell, Dean Muirhead, PhD, 
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PhD, Stephanie Roohi, Michael Rouen, Kathy Ruminsky, James Russell, PhD, John Sager, PhD, Laura A. Shaw, 
David A. Vaccari, PhD,  Jennifer Villarreal, Yael Vodovotz, PhD, Sandra Wagner, Kanapathipi Wignarajah, PhD, 
Chantel Whatley, Raymond Wheeler, PhD, Kristina R. Wines, Jannivine Yeh. 
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2 APPROACH 
The assumptions here arise from various sources and they are organized into sets of similar data.  These 

assumptions relate to the scenarios, the mission infrastructure, and the various life support subsystems.  References 
are documented where possible to provide traceability. 

 DEVELOPMENT 

The baseline values and assumptions are based on experience in developing models of life support systems.  
The various contributors to the BVAD have focused on quantitative aspects of their areas of expertise allowing 
comparison with other life support system models or other scenarios.  Upper and lower limits are given as 
recommended values.  In some cases, the upper and lower limits are definite values set by scientific principles, while 
in other cases they are representative values that will not often be exceeded in a real system. 

 CONTEXT 

This document does not assume and is not particular to a specific mission, but does focus on near-term and 
far-term exploration missions of importance to NASA.  In some cases, the data may be applicable to only certain 
missions.  Life support focused reference mission documents (the most recent published by Exploration Life Support 
in 2008) may be referred to for more details of potential mission scenarios. 

 LIFE SUPPORT SUBSYSTEMS 

A vehicle’s life support system is made of several different subsystems performing different functions.  
Hanford (2000) provides a generic description of life support subsystems as well as subsystem and interface 
relationships for a life support system.  This approach originally mirrored the organization for the Advanced Life 
Support (ALS) Program (Berry, et al. 1994). This classification initially arose from a Systems Modeling and Analysis 
Project 1 workshop in the fall of 1999.  The Exploration Life Support (ELS) project followed ALS and more recently 
life support technology development has been conducted under Next Generation Life Support and Advanced 
Exploration Systems within NASA. System classification can vary depending on a specific project’s work breakdown 
structure, so a representative grouping commonly used in the NASA life support community has been adopted for this 
BVAD.  Basic descriptions of the subsystems and their interfaces are given in Table 2-1 and in Table 2-2.   Information 
within the BVAD will be organized according to this structure. 

As noted above, many formats to describe life support systems exist.  Here Air, Waste, and Water are 
classified as systems or subsystems, while Habitation, Crew2 , Environmental Monitoring and Control (EMC), 
Extravehicular Activity (EVA) Support, Food, In-Situ Resource Utilization (ISRU), Power, Propulsion, Radiation 
Protection, Thermal and Medical Systems are external life support interfaces.  The interfaces listed in the last column 
for each subsystem or interface are generally inclusive, attempting to account for all possible interactions, even if 
some of those interactions are highly unlikely.  Figure: 2-1 provides a graphical depiction of the information in 
Table 2-2. 

Please note that within this document the subsystem names, such as “Air Subsystem” and “Water 
Subsystem,” are proper names.  However, the generic terms “system” and “subsystem” are often used interchangeably 
in the text within this document to refer to similar suites of equipment, depending on the scope of the project or 
analysis, as systems can be defined at many levels.  This relaxed approach with respect to nomenclature reflects the 
constantly changing perspective that both researchers and analysts use while considering many different technologies 
or groups of technologies.  In reality, most life support equipment is constructed from several lower-level components 
and also fits within a higher-level assembly.  Thus the terms “system” and “subsystem” vary according to the current 
discussion and often differ for other studies. 

                                                           
1 Systems Modeling and Analysis Project is the previous name for the Systems Integration, Modeling, and Analysis element. 
2 Though the presence of the crew alone justifies the inclusion of the life support subsystems, the crewmembers are external 

to the life support equipment and thus are listed as an interface here. 
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Table 2-1 Life Support Subsystem Descriptions and Interfaces 

Subsystem Description Life Support 
System Interfaces 

Air The Air Subsystem maintains the vehicle cabin atmospheric 
pressure and quality.  Functional areas include atmospheric gas 
storage, supply, and air circulation including positive and negative 
pressure control; carbon dioxide partial pressure control; moisture 
removal (often in cooperation with a Thermal Interface condensing 
heat exchanger); trace chemical contaminant control; particulate 
matter control; resource recovery, storage, and recycling; and 
supporting infrastructure.  The air system often includes many 
components for emergency scenarios.  These emergency systems 
need to provide similar functions as the nominal systems, but very 
different technologies may be used for the specific contingency 
scenarios. 

Habitation, Waste, Water, 
EMC, Crew, EVA 
Support, ISRU, Power, 
Thermal, Propulsion 

Waste The Waste Subsystem collects waste products from packaging 
materials, human wastes, or process wastes.  Depending on mission 
needs the wastes can be minimally processed to reduce storage size 
and control odor, can be rendered biologically inactive or can be 
recycled into commodities useful for accomplishing mission goals. 

Air, Habitation, Water, 
EMC, Crew, EVA 
Support, Food, Power, 
Radiation Protection, 
Thermal, Propulsion 

Water The Water Subsystem collects wastewater from all possible 
sources, recovers and transports potable water, and stores and 
provides that water at the appropriate purity and at the appropriate 
level of biological activity, for crew and external users, for 
consumption, hygiene, for use as a process reactant or for meal 
cleanup and housekeeping. 

Air, Habitation, Waste, 
EMC, Crew, EVA 
Support, Food, ISRU, 
Power, Radiation 
Protection, Thermal, 
Propulsion 
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Table 2-2 Life Support Interfaces Descriptions and Interfaces 

Life Support 
Interfaces Description Life Support 

System Interfaces 
Crew The Crew Interface interacts with all life support subsystems and 

interfaces.  It accounts for all metabolic inputs and outputs from crew 
members.  Historically, and likely in the near-term (until other animals or 
plants are included in the mission in large scales), crewmembers are the 
foremost consumers of life support commodities and the primary 
producers of waste products. 

All 

Environmental 
Monitoring and 
Control 

The Environmental Monitoring and Control (EMC) Interface provides 
information on the chemical and biological status of the crew habitat.  
This includes trace and major constituent composition of air and water, 
smoke detection, and microbial content of air, water, and surfaces.  The 
information is used to control proper functioning of the life support 
system, as well as indicate off-nominal events. 

All 

Extravehicular 
Activity Support 

The Extravehicular Activity (EVA) Support Interface provides life 
support consumables for all suited activities, including oxygen, water, 
and food, as well as carbon dioxide and waste removal.  Suits may be 
employed for launch, entry and abort (in case of cabin depressurization); 
nominal or contingency EVA in a weightless environment; emergency 
return from a human mission beyond low-Earth orbit; and surface EVA 
operations on the Moon and Mars. 

Air, Habitation, Waste, Water, 
EMC, Crew, Food, Power, 
Thermal 

Food The Food Interface provides the crew with prepackaged food products or 
commodities requiring some level of preparation or processing, and 
includes the stowage systems necessary for these items.  If an advanced 
life support system were to include a Biomass Subsystem, the Food 
System would also receive harvested agricultural products and process 
them into an edible form. 

Air, Habitation, Waste, Water, 
EMC, Crew, EVA Support, 
Power 

Habitation The Habitation Interface is responsible for crew accommodations and 
human engineering.  The packaging and preparation and storage of crew 
supplies includes the galley layout and food supplies, clothing 
management systems, fire suppressant, gas masks, hygiene stations and 
supplies, housekeeping and related supplies, and other functions related 
to configurable crew living.  This technology area is responsible for 
implementing the hardware resulting from human factors requirements. 

Air, Waste, Water, EMC, 
Crew, EVA Support, Food, 
Power, Radiation Protection, 
Thermal 

In-Situ Resource 
Utilization 

The In-Situ Resource Utilization Interface provides life support 
commodities such as gases, water and regolith from local planetary 
materials for use throughout the life support system. 

Air, Water, EMC, Crew, 
Power, Radiation Protection 

Medical Systems Under nominal conditions medical systems would generally have an 
inconsequential impact on the life support systems, but if an event should 
occur causes illness or injury, the impacts on the Life Support System 
could be drastic.  This includes medical and metabolic monitoring of the 
crew during EVAs. Gases may be required for hyperbaric treatment, 
respiratory therapy, or to provide oxygen for certain medical procedures 
while controlling flammability risks in the cabin. Additional water may 
be required and waste could be generated that might not be allowed to be 
stored, processed, or recycled like waste from nominal activities.. 

Air, Water, Waste 
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Power The Power Interface provides the necessary energy to support all 
equipment and functions within the life support system.  It may also 
provide resources like fuel cell product water to the life support system. 

All 

Propulsion The Propulsion Interface may provide resources such as oxygen and 
cooling evaporant to the life support system and thermal control system 

Air, Water, EMC, Waste, 
EVA Support, Thermal 

Radiation 
Protection 

The Radiation Protection Interface includes systems design to provide the 
crew protection from environmental radiation.  The life support system 
could provide some useful contribution to radiation protection, especially 
in the form of water or waste products.  The Radiation Protection 
Interface also provides sensors and other predictive measures for solar 
particle events, so the crew might seek shelter from such an event. 

Habitation, Waste, Water, 
Crew, Food, ISRU, Power 

Thermal The Thermal Interface is responsible for maintaining cabin temperature 
and humidity (unless controlled jointly with other atmosphere 
revitalization processes) within appropriate bounds and for collection and 
removal of the collected waste heat from crew, equipment, and the 
pressurized volume to the external environment.  Note: Equipment to 
remove thermal loads from the cabin atmosphere normally provides 
sufficient air circulation.  Thermal Interface work is conducted under the 
Thermal Control System Development for Exploration Project. 

Air, Habitation, Waste, Water, 
EMC, Crew, EVA Support, 
Food, Power 
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Figure: 2-1  Life Support System interfaces. 

 

 DEFINITIONS 

2.4.1 MODELING 
Modeling is analogous to a system that mimics the behavior of some real system.  Within ELS, mathematical 

models are used to predict or simulate, control, design, optimize, or facilitate an understanding of a life support system, 
a component, or a subsystem.  Models might be quite simple, a calculation of overall masses, for example, or quite 
complex, involving gas exchange at molecular levels.  This document includes and supports both types of models. 

2.4.2 INFRASTRUCTURE 
Infrastructure is everything necessary to operate the life support equipment that is not otherwise specifically 

defined elsewhere as a component of the life support system.  For an overall life support system analysis, the system 
includes the life support equipment.  Necessary infrastructure, then, may include all necessary supplies and equipment 
for electrical power generation or a pressurized cabin in which the equipment operates.  Some infrastructure, though 
vital to overall system success, may have a small or negligible impact on a study’s primary focus.  For example, data 
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and communications infrastructure generally have little impact on the equivalent system mass of a life support system 
and can thus be safely neglected in this case3.  Table 2-1 and Table 2.2 identify the most common and significant 
interactions between life support subsystems and other spacecraft systems outside of the life support system.  Section 
3.2 discusses and lists infrastructure cost factors for overall life support system analyses, while Table 2-2 provides 
additional information about commodity demands to and from the life support interfaces. 

2.4.3 EQUIVALENT SYSTEM MASS 
Although there are many possible ways to assess progress toward goals for the Life Support System, one of 

the key parameters used is a metric based on Equivalent System Mass (ESM). 

2.4.3.1 EQUIVALENT SYSTEM MASS EXAMPLE 

Equivalent system mass (ESM) is a technique by which several physical quantities describing a system or 
subsystem may be reduced to a single physical parameter.4  For example, say a power generator solely supplies a 
water purification system, then the mass required for the water purification system is the mass of the system itself plus 
the mass increase to the power system.  In reality, for a space vehicle, the power system supplies power for several 
different functions, not just water purification.  A power equivalency factor is defined to indicate how much of the 
total power being generated can be attributed to water purification and how much supports other needs.  This power 
equivalency factor allows the fraction of the power dedicated to water purification to be separated and grouped with 
the water purifier. 

2.4.3.2 EQUIVALENT SYSTEM MASS DESCRIPTION 

Conversion of quantities like power, volume, thermal load, and crewtime to equivalent masses is 
accomplished by determining appropriate mass penalties or conversion factors to convert the non-mass physical inputs 
to an equivalent mass.  For systems that require power, the Power Interface can yield an appropriate power-mass 
penalty by dividing the average power plant output by the total mass of the generating power plant.  Thus, for a nuclear 
power plant on an independent lander that delivers an average of 100 kWe of electrical power and has an overall mass 
of 8,708 kg (Mason, et al., 1992) 5 the power-mass penalty is 87.1 kg/kW-electric We.  This power-mass penalty 
effectively assigns a fraction of the Power Interface mass to a power-using subsystem in place of that subsystem’s 
power requirement.  This would include the impact to thermal loads for cooling the power generation and power used 
to heat the cabin habitability volume.  In like manner, mass penalties to account for heat rejection and volume within 
a pressurized shell are defined.  A crewtime mass penalty is also defined below.  The definition of equivalent mass 
for a system is the sum of the equipment and consumable commodity mass plus the power, volume, thermal control, 
and crewtime requirements converted to mass by using equivalency factors.  Please see ESM GD (2003) for additional 
information on ESM. 

 

2.4.4 UNITS AND VALUES 
All numerical assumptions are given using the Système Internationale d’Unités (SI).  This approach is 

consistent with NASA Policy Directive 8010.2 D (NPD 8010.2 D, 2004).  A list of SI units for physical quantities of 
interest is provided in the Appendices.  Some values are also presented in comparable English units. 

Generally, lower, nominal, and upper values are provided.  Unless stated otherwise, the numbers are intended 
to represent average values under nominal conditions for different design cases.  Short-term fluctuations are not 
considered, nor are emergency or contingency situations except as explicitly noted.  Values not listed per capita assume 
a crew of four, unless otherwise stated. 

                                                           
3  While the life support system requires displays, the mass of these items are small relative to the overall system mass. 
4 An ESM evaluation is similar in form to computing a project’s net present value in that if future value, interest rate and/or 

annuitized value can be converted into present value then two projects can be compared by like units since all the numbers 
used have been converted to present value.  Thus, ESM is a method for ranking a system or subsystem concept relative to 
other concepts. 

5 The actual mass quoted here has been adjusted slightly to account for some differences between the work listed in the 
reference and the desired system. 
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 MISSION DURATION 

Duration of space exploration missions with a crew may vary from a few hours up to decades when 
considering historical experience, and planned and possible mission concepts to explore the Moon, Mars, and beyond.  
To provide guidance on common mission duration characteristics, Table 2-3 through Table 2-7 provide a series of 
classifications for mission durations with a corresponding listing, in qualitative terms, of likely approaches for life 
support functions.  Two or more approaches for life support functions may exist because the design ultimately is 
influenced by numerous architectural decisions and mission constraints.  Table 2-3 provides an overall summary, 
while Table 2-4 through Table 2-7 provides details of life support functions as well as qualitative examples for each 
function.  For an actual flight program, each life support function, as well as the subsystems comprising the vehicle 
environmental control and life support subsystem, will have detailed functional specifications assigned.  Specific 
requirements, constraints, and trade-offs for the vehicle may result in selecting a life support system for a future 
mission that is different from these generalized groupings of functions. 

Tables such as Table 2-3 through Table 2-7 may be used in many ways.  Of primary importance here are the 
following two uses. 

The first use involves the mission designators listed in Table 2-3.  The subsystem and interface descriptions 
associated with each designator bounds, in a qualitative manner, some approaches to process technologies and 
architecture that NASA might consider to accomplish a mission of the specific duration.  While deviations may exist, 
the descriptors for each designator provide either common shorthand or at least a common starting point to discuss a 
mission.  For example, a researcher may examine a “short” mission using the first option when more than one option 
is available. 

The second use involves using Table 2-4 through Table 2-7 to categorize life support system architecture 
regardless of the mission duration.  In general, “Option 1” is an open-loop approach, relying strongly on single-use 
systems and supplies from Earth.  Option 2 and 3 will begin to add some reusable components and technologies that 
can regenerate wastes into useful resources.  The later options evolve more and more into complex closed-loop systems 
intended to be sustainable without resupply from Earth, but at the expense of sending a large and complex life support 
system.   

For an overall example starting with the categories in Table 2-3, Project Mercury used “stored commodities 
(oxygen in tanks) with consumable waste removal hardware (lithium hydroxide cartridges)” for the air subsystem, 
“launch-entry suit” for the habitation interface, “waste storage only” for the waste subsystem, “stored (water)” for the 
water subsystem, “stored food only”, for the food interface, “rejection with consumables” for the thermal interface, 
etc.   Using Table 2-4, the categorization for Project Mercury might continue by specifying “consumables” for carbon 
dioxide removal, “stored commodities” for oxygen supply, “none” for carbon dioxide reduction, etc. It should be noted 
that for another mission concept, individual options might be “physicochemical hardware and regenerable 
consumables” for carbon dioxide removal, “stored commodities” for oxygen supply, “none” for carbon dioxide 
reduction. 
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Table 2-3 Overall Description of Mission Duration and Life Support System Functionality 

Designator 

 
 

Duration 
Air 

Subsystem 
Habitation 
Interface 

Waste 
Subsystem 

Water 
Subsystem 

Food 
External 
Interface 

Thermal 
External 
Interface 

Opt 1: Very Short ~30 hours 
Stored Commodities 

w/ Consumable Waste 
Removal Hardware 

Launch-Entry Suit w/ Wipes Only 

Waste Storage Only; 
Minimal 

Restrictions 
on Inputs 

Stored 
/ Consumables Stored Food Only Rejection 

w/ Consumables 

Opt 2: Short ~20 days 

Stored Commodities 
w/ Consumable Waste 

Removal Hardware 

Launch-Entry Suit +/- Other Clothing 
w/ Wipes & Bags for Toilet 

Waste Storage Only; 
Minimal 

Restrictions 
on Inputs 

Stored 
/ Consumables Stored Food Only 

Non-Consumable 
Rejection Supplemented 

by Consumables 
Regenerable 

Physicochemical 
Hardware 

w/ Consumables & Make 
Up, If Necessary 

Pre-Packaged Clothing; Limited 
Water for Oral Hygiene; Wipes for 

Body Hygiene; Dedicated Toilet, 
Semi-private/temporary sleep areas; 

Smoke Detection and Fire 
Suppression 

Waste Stabilization 
w/o Water 

Recovery; Minimal 
Restrictions 
on Inputs; 

Source Separation 

Opt 3: Medium ~20 weeks 

Regenerable 
Physicochemical 

Hardware 
w/ Consumables & Make 

Up, If Necessary 

Pre-Packaged Clothing; Limited 
Water for Oral Hygiene; Wipes for 

Body Hygiene; Dedicated Toilet, 
Private Sleep Areas, Temporary 
Radiation Storm Shelter; Smoke 
Detection and Fire Suppression 

Waste Stabilization 
w/o Water 

Recovery; Minimal 
Restrictions 
on Inputs; 

Source Separation.  
25% logistics carrier 

waste reuse 

Stored 
/ Consumables 

Stored Food Only 

Non-Consumable 
Rejection Supplemented 

by Consumables 
Recovery / Reuse of 
Some Waste Water 

w/ Other Waste 
Water Stored; 
Make Up from 

Stores; Consumables 
Supplied 

Non-Consumable 
Rejection 

Opt 4: Long ~10-20 
months 

Physicochemical 
Hardware & Regenerable 

Consumables 
w/ Negligible 

Bioregeneration & In-Situ 
Oxygen, If Necessary 

& Available 

 

Waste Stabilization 
w/ Water Recovery; 

Wet Wastes 
Accepted 

w/ Others Stored 
50% logistics carrier 

waste reuse.  50% 
Waste processing 
residuals  used for 

shielding or 
converted to 

methane propulsion 
for station keeping 

Recovery / Reuse of 
Some or All Waste 

Water  w/ Any 
Other Waste Water 

Stored w/o Brine 
Recovery, 

If Produced; 
Consumables 

Supplied 

Stored Food 
w/ Fresh Vegetable 

Production Unit 

Non-Consumable 
Rejection Supplemented 

by Consumables 

Physicochemical 
Hardware & Regenerable 

Consumables w/ Minor 
Bioregeneration & In-Situ 

Oxygen, f Necessary 
& Available 

 

Limited Clothing Laundry; Water for 
Oral & Body Hygiene; 

Dedicated Toilet, Private Sleep Areas, 
Dedicated Radiation Storm Shelter 

Recovery / Reuse of 
All Waste Water 

w/ Brine Recovery, 
If Produced; 
Consumables 

Supplied; ISRU 
Make Up Possible 

15 % Bioregeneration 
w/ Stored Food 

Non-Consumable 
Rejection 



Life Support Baseline Values and Assumptions Document, NASA/TP-2015-218570, Rev1 January 2018 

 

11 

Table 2-3 Overall Description of Mission Duration and Life Support System Functionality (concluded) 

Designator Duration 
Air 

Subsystem 
Habitation 
Interface 

Waste 
Subsystem 

Water 
Subsystem 

Food 
External Interface 

Thermal 
External Interface 

Opt 5: Very 
Long ~10 years 

Physicochemical Hardware 
& Regenerable 

Consumables w/ Minor 
Bioregeneration & In-Situ 

Oxygen, If Necessary 
& Available 

Clothing Laundry; 
Free Water for Oral 

& Body Hygiene; 
Dedicated Toilet 

Private Sleep Areas, 
Dedicated Radiation 

Storm Shelter 

Waste Stabilization 
w/ Water Recovery; 

Wet Wastes Accepted 
w/ Others Stored >75% 
logistics carrier waste 
reuse.  >75% Waste 

processing residuals used 
for shielding.  Production 

of methane (combined with 
ISRU) or oxygen/water 

Recovery / Reuse of All 
Waste Water w/ Brine 
Recovery, If Produced; 
Consumables Supplied; 
ISRU Make Up Possible 

Stored Food 
w/ Fresh Vegetable 

Production Unit 

Non-Consumable Rejection 

Significant Bioregeneration 
w/ Physicochemical 
Hardware & In-Situ 

or Regenerable 
Consumables; Wastes 

Vented or Stored 

Reclamation of 
Life Support Commodities 

w/ Consumables, 
Mineralization, & Storage 

Recovery / Reuse of All 
Waste Water w/ Brine 
Recovery, If Produced; 

ISRU Make Up 
& Consumable Manufacture 

15 % Bioregeneration 
w/ Stored Food 

Opt 6: Multi-
Generational 

~2-10 
decades 

Integrated Bioregeneration 
w/ In-Situ Commodities for 

Minimal Losses & Some 
Hardware Manufacturing 

Clothing Laundry; 
Unlimited Water for 

Oral & Body Hygiene; 
Dedicated Toilet 

Reclamation of 
Life Support Commodities 

w/ Consumables, 
Mineralization, & Storage 

Recovery / Reuse of All 
Waste Water w/ Brine 
Recovery, If Produced; 

ISRU Make Up 
& Consumable Manufacture 

50 % Bioregeneration 
w/ Stored Food 

Non-Consumable Rejection 

Reclamation of 
Life Support Commodities 
w/ Mineralization, 
& Storage 
w/o Consumables 

75 % Bioregeneration 
w/ Stored Food 

Integrated Bioregeneration 
w/ In-Situ Commodities for 

Minimal Losses 
& All Hardware 
Manufacturing 

Clothing Laundry; 
Unlimited Water for 

Oral & Body Hygiene; 
Dedicated Toilet; 

Clothing 
Manufactured Locally 

Recovery / Reuse of All 
Waste Water w/ Brine 
Recovery, If Produced; 

ISRU Make Up 
& All Hardware 

Manufacture 

Essentially Complete 
Bioregeneration w/ Protein 

from Plant Products 

Reclamation of All 
Commodities 

w/ Mineralization 
w/o Consumables 

w/o Permanent Storage 
(No Waste) 

Complete Bioregeneration 
w/ Protein from Animal 

Products 

Opt 7: 
“Permanent” 

~1 × 109 
years 

Integrated Bioregeneration 
w/ In-Situ Commodities for 

Minimal Losses 
& All Hardware 
Manufacturing 

Clothing Laundry; 
Unlimited Water for 

Oral & Body Hygiene; 
Dedicated Toilet; 

Clothing 
Manufactured Locally 

Reclamation of All 
Commodities 

w/ Mineralization 
w/o Consumables 

w/o Permanent Storage 
(No Waste) 

Recovery / Reuse of All 
Waste Water w/ Brine 
Recovery, If Produced; 

ISRU Make Up 
& All Hardware 

Manufacture 

Complete Bioregeneration 
w/ Protein from Animal 

Products 
Non-Consumable Rejection 
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Table 2-4 Functionality and Possible Options for the Air Subsystem 

 

Air 
Subsystem 

Air 
Subsystem: 

Carbon 
Dioxide 

Removal 

Air 
Subsystem: 

Oxygen 
Supply 

Air 
Subsystem: 

Carbon 
Dioxide 

Reduction 

Air 
Subsystem: 

Trace 
Contaminant 

Control 

Air 
Subsystem: 

Pressure 
Control 

Air 
Subsystem: 

In-Situ Resource 
Utilization 

Air 
Subsystem: 

Sparing 

Opt 1 

Stored Commodities 
w/ Consumable 
Waste Removal 

Hardware 

Consumables 
Stored 

Commodities 
/ Consumables 

None None Stored None None 

Opt 2 

Regenerable 
Physicochemical 

Hardware 
w/ Consumables 

& Make Up, 
If Necessary 

Physicochemical 
Hardware 

& Regenerable 
Consumables 

Physicochemical 
Hardware 

& Regenerable 
Consumables 

Physicochemical 
Hardware 

& Regenerable 
Consumables; Waste 

Gases Vented 

Consumables 
& Venting Wastes, 

If Necessary 

Consumable 
Chemical Generation 

or Stored Gases 
Provide Oxygen Logistics Supply 

Opt 3 

Physicochemical 
Hardware 

& Regenerable 
Consumables 
w/ Negligible 

Bioregeneration & In-
Situ Oxygen, 
If Necessary 
& Available 

Physicochemical 
Hardware 

& Regenerable 
Consumables 

w/ Minor 
Bioregeneration 

Physicochemical 
Hardware 

& Regenerable 
Consumables 

w/ Minor 
Bioregeneration 

Physicochemical 
Hardware 

& Regenerable 
Consumables; 
Wastes Vented 

or Stored 

Regenerable 
Hardware, 

Venting Wastes, 
If Necessary, 

w/o Consumables 

Completely 
Regenerable 
Generation 

Provide Diluent Gas 
Logistics Supply 

w/ Limited 
Remanufacturing 

Opt 4 

Physicochemical 
Hardware 

& Regenerable 
Consumables w/ Minor 
Bioregeneration & In-

Situ Oxygen, 
If Necessary 
& Available 

Significant 
Bioregeneration w/ 

Physicochemical 
Hardware 

& Regenerable 
Consumables 

Significant 
Bioregeneration w/ 

Physicochemical 
Hardware 

& Regenerable 
Consumables 

Physicochemical 
Hardware 

& Regenerable 
Consumables; 
Wastes Vented 

or Stored; 
Minor 

Bioregeneration 

Regenerable 
Hardware w/o Losses 

or Consumables 
Use Local Materials Provide Oxygen 

& Diluent Gas 

Local 
Manufacturing; In-

Situ Resource 
Feedstock 
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Table 2-4 Functionality and Possible Options for the Air Subsystem (concluded) 

 
Air 

Subsystem 

Air 
Subsystem: 

Carbon 
Dioxide 

Removal 

Air 
Subsystem: 

Oxygen 
Supply 

Air 
Subsystem: 

Carbon 
Dioxide 

Reduction 

Air 
Subsystem: 

Trace 
Contaminant 

Control 

Air 
Subsystem: 

Pressure 
Control 

Air 
Subsystem: 

In-Situ Resource 
Utilization 

Air 
Subsystem: 

Sparing 

Opt 5 

Significant 
Bioregeneration 

w/ Physicochemical 
Hardware & In-Situ 

or Regenerable 
Consumables; Wastes 

Vented or Stored 

Integrated 
Regeneration; 

Bioregenerative 
w/ > 50 % Food 

Closure; 
Consumables 

Produced In-Situ 

Integrated 
Regeneration; 

Bioregenerative 
w/ > 50 % Food 

Closure; 
Consumables 

Produced In-Situ 

Significant 
Bioregeneration w/ 

Physicochemical 
Hardware 

& Regenerable 
Consumables; 
Wastes Vented 

or Stored 

Regenerable 
Hardware 
w/o Losses; 

Local Spares 
Manufacturing 

 
Provide Oxygen, 

Diluent Gas, & Other 
Consumables 

Local Manufacturing 
of All Equipment; 
In-Situ Resource 

Feedstock 

Opt 6 

Integrated 
Bioregeneration w/ In-
Situ Commodities for 

Minimal Losses 
& Some Hardware 

Manufacturing 

Integrated 
Regeneration; 

Bioregenerative 
w/ > 75 % Food 

Closure; Any Spares 
& Consumables 

Produced In-Situ 

Integrated 
Regeneration; 

Bioregenerative 
w/ > 75 % Food 

Closure; Any Spares 
& Consumables 

Produced In-Situ 

Integrated 
Regeneration; 

Bioregenerative 
w/ > 50 % Food 

Closure; 
Consumables 

Produced In-Situ 

  Provide All Required 
Consumables 

None; 
No Spares Needed 

(Fully Reliable 
w/o Spares) 

Opt 7 

Integrated 
Bioregeneration w/ In-
Situ Commodities for 
Minimal Losses & All 

Hardware 
Manufacturing 

  

Integrated 
Regeneration; 

Bioregenerative 
w/ > 75 % Food 

Closure; Any Spares 
& Consumables 

Produced In-Situ 

  
Provide All Required 

Consumables 
& Spares 
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Table 2-5 Functionality and Possible Options for the Habitation Interface 

 
Habitation 
Interface 

Habitation Interface: 
Metabolic Waste 

Collection 

Habitation Interface: 
Oral & Body 

Hygiene 
Habitation Interface: 

Clothing 
Habitation Interface: 

Sparing 

Opt 1 
Launch-Entry Suit 

w/ Wipes Only MAGs or UCDs None or Wipes Launch-Entry Suit 
Only None 

Opt 2 

Launch-Entry Suit 
+/- Other Clothing 

w/ Wipes 
& Bags for Toilet 

MAGs or UCDs, Apollo 
Bags / No Dedicated 

Hardware 

Wipes w/ Limited 
Water for Oral 

Hygiene; Toothpaste 
Restrictions 

Launch-Entry Suit 
w/ Pre-Packaged 

Clothing 
Logistics Supply 

Opt 3 

Pre-Packaged Clothing; 
Limited Water for Oral 

Hygiene; Wipes for 
Body Hygiene; 

Dedicated Toilet 

Dedicated Toilet 
w/ Consumables 

Limited Water for Oral 
& Body Hygiene; 

Cleanser Restrictions 

Launch-Entry Suit 
w/ Pre-Packaged 

Clothing 

Logistics Supply 
w/ Limited 

Remanufacturing 

Opt 4 

Pre-Packaged Clothing; 
Limited Water for Oral 

& Body Hygiene; 
Dedicated Toilet 

Dedicated Toilet 
w/o Consumables or 

Regenerable 
Consumables 

Free Water for Oral 
& Body Hygiene; 

Cleanser Restrictions 

Aqueous Laundry 
w/ Consumable 
Cleaning Agent; 

Launch-Entry Suit 
w/ Pre-Packaged 

Clothing 

Local Manufacturing; 
In-Situ Resource 

Feedstock 

Opt 5 

Clothing Laundry; 
Unlimited Water for 

Oral & Body Hygiene; 
Dedicated Toilet 

Toilet & Associated 
Supplies Manufactured 

Locally 

Free Water for Oral 
& Body Hygiene; 

No Cleanser 
Restrictions 

Aqueous Laundry 
w/ Regenerable 
Cleaning Agent; 

Launch-Entry Suit  

Local Manufacturing of 
All Equipment; In-Situ 

Resource Feedstock 

Opt 6 

Clothing Laundry; 
Unlimited Water for 

Oral & Body Hygiene; 
Dedicated Toilet; 

Clothing Manufactured 
Locally 

  Clothing Manufactured 
Locally 

None; 
No Spares Needed 

(Fully Reliable 
w/o Spares) 
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Table 2-6 Functionality and Possible Options for the Waste Subsystem 

 
Waste 

Subsystem 

Waste 
Subsystem: 
Input Trash 

Model 

Waste 
Subsystem: 

Volume 
Reduction 

Waste 
Subsystem: 
Stabilization 

/ Making Safe 

Waste 
Subsystem: 

Containment 

Waste 
Subsystem: 
Resource 
Recovery 

Waste 
Subsystem: 

Sparing 

Opt 1 

Waste Storage Only; 
Minimal Restrictions 

on Inputs 

Trash, including 
Expended Clothing 
& Crew Metabolic 
Wastes w/o Source 

Separation 

None / Manual 
/ “Footballs” None Storage in Vehicle None None 

Opt 2 

Waste Stabilization 
w/o Water Recovery; 
Minimal Restrictions 

on Inputs; Source 
Separation 

Trash, including 
Expended Clothing 
& Crew Metabolic 
Wastes w/ Source 

Separation 

Physical Compaction Chemical Stabilization 
(Consumables) 

Storage w/ Odor 
Control; 
Limited 

Duration in Vehicle 

Water Only Logistics Supply 

Opt 3 

Waste Stabilization 
w/ Water Recovery; 

Wet Wastes Accepted 
w/ Others Stored 

Trash, Clothing, Crew 
Metabolic Wastes 

& Inedible Biomass 
w/ Source Separation 

Melt Compaction 

Moisture Removal 
(Dewatering / Freeze-

Drying) w/o 
Encapsulation 

Storage w/ Odor 
Control; 

Unlimited Duration in 
Vehicle 

Water & Minerals; 
< 50 % Food Closure 

w/ Biomass Production 

Logistics Supply 
w/ Limited 

Remanufacturing 

Opt 4 

Reclamation of 
Life Support 
Commodities 

w/ Consumables, 
Mineralization, 

& Storage 

Trash, Clothing, Crew 
Metabolic Wastes 

& Inedible Biomass 
w/o Source Separation 

Partial Mineralization 
w/ Melt Compaction 

Moisture Removal 
(Dewatering / Freeze-

Drying) 
w/ Encapsulation 

Storage w/ Odor 
Control 

& Stabilization; 
Unlimited Duration 

Outside Vehicle 

Water, Minerals, 
& Some Carbon 

Dioxide; > 50 % Food 
Closure w/ Biomass 

Production 

Local Manufacturing; 
In-Situ Resource 

Feedstock 

Opt 5 

Reclamation of 
Life Support 

Commodities w/ 
Mineralization, 

& Storage 
w/o Consumables 

Trash, Clothing, Crew 
Metabolic Wastes 

& Inedible Biomass 
w/o Source Separation; 

Expended Hardware 
w/ Source Separation 

Complete 
Mineralization or 
Other Complete 

Volume Reduction 

Partial or Complete 
Mineralization 

None; 
Essentially 
Complete 

Reutilization 

Water, Minerals, 
& Full Carbon Dioxide 

Local Manufacturing of 
All Equipment; In-Situ 

Resource Feedstock 

Opt 6 

Reclamation of All 
Commodities w/ 
Mineralization 

w/o Consumables 
w/o Permanent Storage 

(No Waste) 

    

Water, Minerals, 
Carbon Dioxide, Paper, 

Plastics, Organic 
Feedstocks for Food 
& Other Materials 

None; 
No Spares Needed 

(Fully Reliable 
w/o Spares) 
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Table 2-7 Functionality and Possible Options for the Water Subsystem 

 
Water 

Subsystem 

Water 
Subsystem: 
Removal of 

Organic 
Compounds 

Water 
Subsystem: 
Removal of 
Inorganic 

Compounds 

Water 
Subsystem: 
Removal of 
Particulates 

Water 
Subsystem: 
Removal of 
Microbial 
Organisms 

Water 
Subsystem: 
Polishing 

Opt 1 
Stored / Consumables None / n/a None / n/a None / n/a 

None / Removable 
/ Consumable Biocide 

at Launch 
None / n/a 

Opt 2 

Recovery / Reuse of 
Some Waste Water 

w/ Other Waste Water 
Stored; Make Up from 
Stores; Consumables 

Supplied 

Regenerative 
Technology 

w/ Consumables 
w/o Brine Recovery; 

If Produced 

Regenerative 
Technology 

w/ Consumables 
w/o Brine Recovery; 

If Produced 

Filtration; Consumable 
Technology 

Locally-Produced 
/ Regenerable, Low-

Toxicity Biocide 

Polishing 
w/ Consumables 

Opt 3 

Recovery / Reuse of 
Some or All Waste 

Water  w/ Any Other 
Waste Water Stored 
w/o Brine Recovery, 

If Produced; 
Consumables Supplied 

Regenerative 
Technology 

w/ Consumables 
& Brine Recovery; 

If Produced 

Regenerative 
Technology 

w/ Consumables 
& Brine Recovery; 

If Produced 

Regenerable Filtration 
or Other Regenerable 

Technology 

Filtration; Consumable 
Technology 

Polishing 
w/ Regenerable 

Technology 

Opt 4 

Recovery / Reuse of All 
Waste Water w/ Brine 
Recovery, If Produced; 
Consumables Supplied; 

ISRU Make Up 
Possible 

Regenerative 
Technology w/ Brine 

Recovery; If Produced; 
w/o Consumables or 

Consumables Produced 
In-Situ 

Regenerative 
Technology w/ Brine 

Recovery; If Produced; 
w/o Consumables or 

Consumables Produced 
In-Situ 

 
Regenerable Filtration 
or Other Regenerable 

Technology 
 

Opt 5 

Recovery / Reuse of All 
Waste Water w/ Brine 
Recovery, If Produced; 

ISRU Make Up 
& Consumable 
Manufacture 

     

Opt 6 

Recovery / Reuse of All 
Waste Water w/ Brine 
Recovery, If Produced; 
ISRU Make Up & All 

Hardware Manufacture 
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Table 2-7 Functionality and Possible Options for the Water Subsystem (concluded) 

 

Water 
Subsystem: 

Water Supply 

 

Water 
Subsystem: 
Wastewater 

Water 
Subsystem: 
Condensate 

Water 
Subsystem: 

In-Situ 
Resource 

Utilization 

Water 
Subsystem: 

Sparing 

Opt 1 Stored  Stored or Vented / No 
Recovery 

Stored or Vented / No 
Recovery None None 

Opt 2 

Water from Other 
Vehicle Processes or 

In-Situ Sources 

 Used 
w/ Minimal 
Purification 

Used 
w/ Minimal 
Purification 

Provide Water 
OR 

Provide Other 
Consumable Agents 

Logistics Supply 

Opt 3 
 

 Purified 
to Potable 
Standards 

Purified 
to Potable 
Standards 

Provide Water & Other 
Agents (H2SO4, etc.) 

Logistics Supply 
w/ Limited 

Remanufacturing 

Opt 4 
 

 
   

Local Manufacturing; 
In-Situ Resource 

Feedstock 

Opt 5 
 

 
   

Local Manufacturing of 
All Equipment; In-Situ 

Resource Feedstock 

Opt 6 
 

 

   

None; 
No Spares Needed 

(Fully Reliable 
w/o Spares) 

Missing the food and thermal interfaces.  Maybe list out the food since it is such a big consumable for the mission into: prepackaged (short life<1.5 year, and long 
life 1.5-5 year shelf, fresh salad augmentation+ prepackaged, fresh food + prepackaged augmentation…)
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 APPLICABLE DOCUMENTS 

The BVAD is intended to provide values for analysis and modeling tasks to study human spaceflight, and 
not to design a specific mission, vehicle or technology.  Analysis and modeling is charged with examining both off-
nominal and diverse technology options.  As a result, many studies may consider situations that differ from the 
accepted bounds listed in the various documents containing requirements.  However, when applicable, the BVAD is 
intended to capture the individual extremes for inputs that are appropriate for human space flight.  Further, while the 
nominal values throughout this document should be consistent with one another, off-nominal values may not be 
consistent with other values within this document.  Thus, the user should independently verify the validity of using 
off-nominal values. 

As noted, the BVAD attempts to provide inputs for all quantities of importance for studies associated with 
life support systems.  However, as research constantly changes, many studies will require inputs for quantities not 
listed here.  In such situations, analysts should use whatever values are appropriate and available and so note and 
reference those values in their reports or documentation.  Further, analysts are asked to report such omissions to the 
document authors and provide whatever information could be used to determine values for such omitted quantities.   

The life support community has used other documents in parallel with the BVAD to document requirements 
or assumptions for specific missions, tailored specifically for life support system relevant content.  The two most 
recent versions of the documents are listed below.  For the reference missions document especially, previous editions 
of the document are not necessarily wrong, but rather describe different kinds of missions that NASA has considered 
at one time. 

ELS RD (2008) “Exploration Life Support Requirements Document”, National Aeronautics and Space 
Administration, Lyndon B. Johnson Space Center, Houston, Texas. 
RMD (2008) “Advanced Life Support Systems Integration, Modeling, and Analysis Reference Missions 
Document,” JSC-64109, Revision A, Duffield, BE Editor, National Aeronautics and Space 
Administration, Lyndon B. Johnson Space Center, Houston, Texas, November. 

 Parameters that are non-negotiable, for whatever reason, were documented within the ELS RD (2008).  
Some of the assumptions documented here may in time become requirements while others will be uncertain until 
the National Aeronautics and Space Administration (NASA) embarks on a specific mission.  Some possible future 
missions are documented in the RMD (2008).  These documents can be used as companions to the BVAD to 
develop consistent mission scenarios for life support system concepts.   

3 OVERALL ASSUMPTIONS 

 MISSIONS 

The mission affects analyses and models by changing the weighting of the various pieces of the system in 
terms of time dependent items, equipment design, and infrastructure cost.  It can also require different contingency 
planning for a mission with a short-term abort option (e.g., low-Earth orbit or lunar missions) versus one without such 
an option (e.g., Martian missions). 
  



Life Support Baseline Values and Assumptions Document, NASA/TP-2015-218570, Rev1 January 2018 

 

19 

 

 

3.1.1 TYPICAL VALUES FOR EXPLORATION MISSIONS 
Many of the missions supported here are outlined in the Exploration Life Support Reference Missions 

Document (RMD, 2008).  Assumptions are given in Table 3-1 for mission parameters associated with missions 
described within the RMD (2008). 

The given volume assumptions in Table 3-1describe unobstructed or free volume per crewmember 6 and are 
specified in terms of ‘tolerable’, ‘performance’, and ‘optimal’ for the listed mission segment.  For purposes here, 
performance should be viewed as nominal.  The underlying lunar mission is taken from RMD (2008) which is based 
on the long-duration Lunar Outpost mission outlined in the Exploration Systems Architecture Study (ESAS) (2005) 
and LAT2 (2007) study.  For either Moon or Mars missions, the duration values represent the complete time the crew 
occupies the indicated vehicle.  Thus, for a transit vehicle, this is the sum for both the outbound and return trips.  As 
a final note, each mission’s architectural configuration may send more than one crew member in sequence to use a 
specific surface habitat.  The values in Table 3-1 represent durations for just a single crew member’s visit to a surface 
habitat. 

Power levels in a spacecraft or habitat of course depend on its size and functions. Some minimum or “keep 
alive” level of power will be required in any human mission to assure crew survival and higher levels will be required 
for comfort and mission objectives. Table 3-2 contains representative power requirements by system for the ISS 
(Pritchett, 2014). The data is nominal stage operations with no robotic or EVA operation being performed. No Visiting 
Vehicles are attached and values are the average power for each system over a one day period at the output of the DC 
to DC Conversion Units. The data is for 0 degree solar beta angle and the power for some systems will vary with solar 
beta angle. 

                                                           
6 These values are also called net habitable volume, which is the remaining pressurized cabin volume after accounting for 

losses due to equipment, stowage, trash, and other items that decrease volume (Ramsey, 2002). 
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Table 3-1 Mission Assumptions 

  Assumptions  

Parameter Units lower nominal upper For additional information refer to: 

Crew Size CM 4 (1) 4 (1) 6 (1, 2) (1) ESAS (2005) 
(2) Hoffman & Kaplan (1997) 
(3) Personal communication with S. Ramsey 

in 2002 
(4) LAT2 (2007) 

Destination: Moon     

Volume: 7  Tolerable Performance Optimal 

Transit Vehicle 8 m³/CM 2.76 (3) 3.54 (3) 4.25 (3) 
Crew Lander 9 m³/CM 1.27 (3) 3.54 (3) 4.39 (3) 
Surface Habitat 10 m³/CM 4.8 11(4) 37 12(4) 39-50 13(4) 

Duration: 14  Minimum Nominal Maximum 

Transit Vehicle 8 d 12 (1) 18 21.1 
Crew Lander 9 d 5 (1) 7 8 (1) 
Surface Habitat 10 d 8 (1) 210 210 (1) 

Destination: Mars     

Volume: 7  Tolerable Performance Optimal 

Transit Vehicle 15 m³/CM 5.10 (3) 9.91 (3) 18.41 (3) 
Crew Lander 16, 
7 days m³/CM 1.13 (3) 3.54 (3) 4.25 (3) 

Crew Lander 16, 
30 days m³/CM 2.27 (3) 4.25 (3) 10.62 (3) 

Surface Habitat 17 m³/CM 5.10 (3) 9.91 (3) 18.41 (3) 

Duration: 14  Minimum Nominal Maximum 

Transit Vehicle 15 d 220 (2) 360 (2) 360 (2) 
Crew Lander 16 d 7 (2) 7 (2) 30 (2) 
Surface Habitat 17 d 540 (2) 600 (2) 619 (2) 

 
 
 
 

  

                                                           
7 The volume here specifically is unobstructed or free volume within the crew cabin. 
8 In ESAS (2005) and/or RMD (2008), this vehicle is the “Crew Exploration Vehicle.” 
9 In ESAS (2005) and/or RMD (2008), this vehicle is the “Lunar Surface Access Module.” 
10 In ESAS (2005) and/or RMD (2008), this vehicle is the “Lunar Outpost.” 
11 LAT2 mobile-hab design 
12 LAT2 mini-hab design 
13 LAT2 monolithic-hab design 
14 This mission would have an immediate abort-to-orbit option, although not necessarily an immediate return option.  Values 

represent total time the vehicle is occupied by the crew throughout the mission. 
15 In Hoffman and Kaplan (1997) and/or RMD (2001), this vehicle is the “Mars Transit Vehicle.” 
16 In Hoffman and Kaplan (1997) and/or RMD (2001), this vehicle is the “Mars Descent / Ascent Lander.” 
17 In Hoffman and Kaplan (1997) and/or RMD (2001), this vehicle is the “Surface Habitat Lander.” 
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Table 3-2    Typical System Power Requirements based on ISS 

System 

Avg. 
Power 
(kW) 

Command & Data Handling 
(C&DH) 4.08 

Crew Health Care System 
(CHeCS) 0.11 

Communication & Tracking 
Systems (CTS) 2.90 

Environmental Control & Life 
Support Systems (ECLSS) 5.31 

Electrical Power Systems (EPS) 2.02 
European Space Agency (ESA) 2.04 
Extravehicular Activity (EVA) 0.00 

Flight Crew Equipment System 
(FCES) 1.07 

Functional Cargo Block (FGB) 1.80 
Guidance, Navigation, & Control 

(GN&C) 0.62 
Japanese Experiment Module 

(JEM) 5.35 
Mechanical (MECH) 0.19 

Multi-Purpose Logistics Module 
(MPLM) 0.56 

Mobile Servicing System (MSS) 1.20 
Payload up to 30 

Service Module (SM) 3.64 
Structure (STRUC) 0.00 

Thermal Control System (TCS) 8.72 
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3.1.2 ASTEROID MISSIONS 
One of NASA’s tentative plans for human exploration is to robotically capture and then redirect a small 

asteroid into a stable lunar orbit, where astronauts can safely visit and study it.  This mission is expected to be 
accomplished with the Orion exploration vehicle with PLSS-based EVAs conduced from Orion.  Other supporting 
elements could be added to enhance mission capabilities later (Gates 2014, NASA website 2014).  The vehicle 
assumptions for human exploration are not unique for this mission, but use the expected capabilities of the Orion 
vehicle.   

 

 INFRASTRUCTURE COSTS AND EQUIVALENCIES 

Infrastructure “costs” (mass, volume, power, thermal control, and crewtime, for example), are key factors in 
overall system analysis.  They effectively apportion a fraction of the infrastructure mass to each component of the life 
support system (see section 2.2).  Appropriate infrastructure “costs” and equivalencies for two possible near-term 
exploration objectives, the Moon and Mars, are provided in Table 3-3 and Table 3-4.  The listed penalties for volume 
account for primary structure only, including micrometeoroid and orbital debris protection and radiation protection 
for the crew, if necessary.  Table 3-10 provides information on secondary structure, including the racks and 
conditioned volumes such as refrigerated spaces.  The nominal values listed in Table 3-3 and Table 3-4 correspond to 
current technologies with few improvements or synergistic advantages.  Less conservative values, with comments on 
applicability, are presented in Table 3-6, Table 3-14, and Table 3-17. 

Infrastructure “costs” vary according to the external mission environment, the technologies used, the mission 
duration, and sometimes other factors.  For example, a power system using solar photovoltaic generation to provide 
electrical power for a transit vehicle has different energy storage requirements than a comparable system with the 
same architecture for an equatorial lunar base.  Likewise, the thermal environment of interplanetary space differs from 
the thermal environment of the lunar or Martian surface.  The tables here include values for surface locales indicative 
of equatorial sites.  Studies at polar sites should use very different values, especially for thermal control (see RMD 
(2008) for polar site values). 

Table 3-3 and Table 3-4 provide two volume cost factors.  The first entry, for shielded volume, reflects 
pressurized primary structure with sufficient radiation protection to provide a safe environment for the crew.  The 
second entry, for unshielded volume, models pressurized primary structure without any radiation protection other than 
what the pressure shell may provide.  The crew will spend limited time within pressurized volume without radiation 
protection.  Thus, the former value applies to technologies and equipment that are susceptible to environmental 
radiation or require significant crew interaction while the latter may be used for technologies and equipment that are 
insensitive to interplanetary radiation and require little crew interaction.  The fourth entry is for thermal control.  These 
values are combined here for convenience. 
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Table 3-3 Long-Duration Lunar Mission Infrastructure “Costs” 

  Assumptions  
Parameter Units lower nominal upper For more information: 

Transit     (1) See Table 3-6 
(2) See 
 
Table 3-14 

(3) See Table 3-17 
(4) See Table 3-32 

Shielded Volume kg/m³  80.8 (1)  
Unshielded Volume kg/m³  45.2 (1)  

Power kg/kW  136 (2)  
Thermal Control kg/kW 55 (3) 65 (3) 65 (3) 

Crewtime 18 kg/CM-h 6.09 (4) 6.09 (4) 7.42 (4) 
Surface     

Shielded Volume kg/m³ 102.0 (1) 133.1 (1) 137.3 (1) 
Unshielded Volume kg/m³  9.16 (1) 13.40 (1) 

Power kg/kW 29 (2) 76 (2) 749 (2) 
Thermal Control kg/kW 97 (3) 102 (3) 246 (3) 

Crewtime 18 kg/CM-h 1.50 (4) 1.50 (4) 2.14 (4) 

Table 3-4 Mars Mission Infrastructure “Costs” 

  Assumptions  
Parameter Units lower nominal upper References 

Transit     (1) See Table 3-6 
(2) See Table 3.14 
(3) See Table 3-17 
(4) See Table 3-32 

Shielded Volume kg/m³  215.5 (1) 219.7 (1) 
Unshielded Volume kg/m³  9.16 (1) 13.40 (1) 

Power kg/kW 10 (2) 23 (2) n/a 
Thermal Control kg/kW  60 (3) 70 (3) 

Crewtime 18 kg/CM-h 0.565 (4) 0.565 (4) 0.728 (4) 
Surface     

Shielded Volume kg/m³  215.5 (1) 219.7 (1) 
Unshielded Volume kg/m³  9.16 (1) 13.40 (1) 

Power kg/kW 54 (2) 87 (2) 338 (2) 
Thermal Control kg/kW  146 (3) 170 (3) 

Crewtime 18 kg/CM-h 0.465 (4) 0.465 (4) 0.957 (4) 

3.2.1 INFRASTRUCTURE COSTS BASED UPON THE EXPLORATION SYSTEMS ARCHITECTURE STUDY 
ESAS (2005) and subsequent Constellation Program (CxP) documentation presented fairly detailed 

descriptions of concepts for a return to the Moon, discussing both a shorter-duration Lunar Sortie and a longer-duration 
Lunar Outpost.  Even though the Constellation Program was discontinued, these studies may be useful for planning 
future space exploration missions.  While the Lunar Sortie approach is nearer-term, the Lunar Outpost is more likely 
to use regenerative life support technologies.  RMD (2008) outlines a possible implementation for a Lunar Outpost 
based upon the documents listed in 3.2.1The values in Table 3-19 at the end of section 3.2, taken from the RMD 

                                                           
18 These crewtime values originate from calculations supporting Metric (2005) which assumes different values than those 

listed for other elements of the infrastructure.  However, the values here are of the same order of magnitude so that the 
crewtime values are of the correct order of magnitude.  To be rigorous, crewtime infrastructure values should be computed 
based upon both the other infrastructure values assumed and the actual life support system configuration.  However, when 
such information is not available, the values here may be used as approximations. 
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(2008), reflect a Lunar Outpost mission. 19  Please note that without reference to the RMD (2008), Table 3-19 is 
incomplete and the reader is encouraged to consult the original source for a broader understanding.  However, for 
those familiar with the RMD (2008), a brief explanation may suffice.  According to ESAS (2005), the Crew 
Exploration Vehicle primarily uses solar photovoltaic cells for power generation, although after separation of the 
Command Module (capsule) from the Service Module, all power is provided by batteries.  Further, according to ESAS 
(2005), the Lunar Surface Access Module uses hydrogen-oxygen fuel cells located on the Descent Stage for primary 
power generation, so the appropriate power-mass penalty has a fixed contribution from the fuel-cell hardware, 
166.2 kg/kWe, and a time-dependent contribution from the reactants consumed, 0.528 kg/kWeh.  Following separation 
of the Ascent Stage from the Descent stage, all power aboard the Lunar Surface Access Module is provided by 
batteries.  The thermal control infrastructure penalties are similar in that the time-independent values of those 
recommended for life support correspond to radiant rejection before module or stage separation, while the time-
dependent components correspond to rejection using consumables after module or stage separation. 20  Because many 
life support systems function during all mission phases, both the time-independent and time-dependent thermal control 
penalties apply. 21  Finally, because this mission, as outlined in RMD (2008), must have precise definition for 
“crewtime” to be calculated there are no corresponding values given for “crewtime”. 22 

Table 3-5 Lunar Outpost Mission Infrastructure “Costs” 

Parameter Units 

Crew 
Exploration 

Vehicle 

Lunar 
Surface 
Access 
Module 

Lunar 
Outpost 

Power     
Power-Mass Penalty kg/kWe 125.9 166.2 274.1 23 
Energy-Mass Penalty, Batteries kg/kWeh 13.0 12.3 undefined 
Energy-Mass Penalty, Reactants kg/kWeh n/a 0.528 undefined 

Thermal Control     
Acquired by Cabin Heat Exchangers & 
Coldplates kg/kWth 60.11 59.1 -- 

Thermal Transport kg/kWth 25.9 15.8 -- 
Rejection by Radiators kg/kWth 12.2 8.5 -- 
Rejection by Consumables kg/kWthh 10.7 6.7 -- 

Recommended Values for Life Support 
Analyses 24 

kg/kWth 50.0 33.1 31.6 25 
kg/kWthh 10.7 6.7 -- 

Vehicle Structure     
Volume kg/m³ 133.8 61.7 100.0 

3.2.2 PRESSURIZED VOLUME OR PRIMARY STRUCTURE COSTS 
Pressurized volume houses the crew and crew-accessible systems.  Characteristic volume “costs” are 

presented in Table 3-6.  The International Space Station (ISS) common module currently provides pressurized volume 
in low-Earth orbit.  An inflatable module could be used as an alternative.  In both cases, the lower value corresponds 
to primary structure with protection from micrometeoroids and orbital debris.  The upper value, if known, also includes 
some dedicated radiation protection. 

The aerodynamic crew capsule in Table 3-6 is based on an ellipse sled and designed to aero-capture in the 
upper atmosphere upon returning to Earth (NASA, 2001a).  The second entry reflects the crew cabin structure without 
                                                           
19 Some values in Table 3-5 may also apply to a Lunar Sortie mission. 
20 Both the Crew Exploration Vehicle and the Lunar Surface Access Module may use consumables to supplement rejection 

before separation during particularly hot mission segments, so this direction is an approximation. 
21 Alternately, for life support hardware that is not used following vehicle separation, only the time-independent thermal 

control penalty applies. 
22 Values from Table 3-32 for the Moon are good approximations in the absence of customized values. 
23 Solar power generation with regenerable fuel cells and cryogenic reactants for energy storage (ESAS, 2005).  This value 

assumes a South-Pole site on the North Rim of Shackleton Crater. 
24 See RMD (2008) for underlying assumptions and details. 
25 For a South Polar site on the North Rim of Shackleton Crater with horizontal radiators with a power-mass penalty of 

274.1 kg/kWe. 
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radiation shielding while the first entry reflects the crew cabin with sufficient radiation shielding for a lunar transit 
mission.  Nominally, according to concepts within NASA (2001a), crew vehicles for near-term lunar missions will 
aero-capture upon returning to Earth, so the nominal values here include thermal protection for aerodynamic heating. 

Table 3-6 Cost of Pressurized Volume 

 Assumptions [kg/m³]  

Technology/Approach lower nominal upper 
 For more information, 
refer to: 

Low-Earth Orbit    (1) Hanford (1997) 
(2) See Table 3-8 
(3) NASA (2001a) 
(4) See Table 3-9. 
(5) From James Russell, 

Lockheed 

ISS Module (shell only) 42.9 (5) 66.7 (1)  
Inflatable Module 19.61 (2) 28.1 (2) 32.4 (2) 
Lunar Mission – Transit    
Shielded Aerodynamic Crew 

Capsule (Ellipse Sled)  80.8 (3)  

Unshielded Aerodynamic 
Crew Capsule (Ellipse Sled)  45.2 (3)  

Lunar Mission – Surface    
Shielded Inflatable Module 102.0 (4) 26 133.1 (4) 26 137.3 (4) 27 
Unshielded Inflatable Module  9.16 (2) 28 13.40 (2) 28 
Martian Mission – Surface 29    
Shielded Inflatable Module 30  215.5 (4) 26 219.7 (4) 27 
Unshielded Inflatable Module  9.16 (2) 28 13.40 (2) 28 

The cost factors listed for inflatable modules, both for the Lunar and Martian missions, assume surface sites.  
The unshielded value reflects just the primary structure without any radiation protection, presuming that some “to be 
determined” in-situ resources, such as regolith, a natural cavern, or local atmosphere, will provide the necessary 
radiation protection.  The nominal shielded value assumes sufficient radiation protection for the location assuming the 
surface locale provides no beneficial protection against radiation, while the upper value for shielded volume also 
includes avionics and power management and distribution masses.  Often, however, this last cost is associated with 
the Power Interface and, therefore, should not also be assessed against the structure mass. 

In recent studies, transit vehicles for Martian missions are generally larger than corresponding vehicles for 
lunar missions, so the volume-mass penalties for surface applications are suitable for transit applications.  In fact, the 
radiation protection values for the Martian missions are sized assuming a crew is present during transfer to Mars.  
Because Mars itself will provide some shielding, the transfer segment is the most severe environment and provides 
the criteria for sizing radiation protection. 

The appropriate volume cost factor generally depends on the sensitivity of specific equipment to the external 
environment or whether the crew must regularly interact with the equipment.  As noted above, in radiation intensive 
environments anywhere beyond the Van Allen Belts, cost factors for shielded volume should be used whenever 
equipment is sensitive to radiation or must be frequently accessed by the crew.  This value reflects the cost of placing 
equipment within the primary crew cabin.  The cost for unshielded volume applies whenever the technology is not 
sensitive to radiation but must remain within a pressurized environment.  The crew might service such equipment 
                                                           
26 Estimate based on primary structure plus shielding mass. 
27 Estimate based on all listed module masses, including avionics and power management and distribution. 
28 Estimate based on primary structure mass only.  Habitats sited on a planetary surface might use in-situ resources for 

radiation shielding and micrometeoroid protection.  Additional equipment may be required to construct such shielding, but 
the associated mass should be considerably less than the corresponding masses from Earth. 

29 Transit vehicles for Martian missions are generally larger, based on current concepts, so volume-mass penalties for surface 
applications would also be suitable for transit applications. 

30 These values are derived from hazards associated with interplanetary space transit.  Vehicles on the surface of Mars would 
receive some beneficial shielding from the local Martian environment. 
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infrequently.  Finally, some technologies are located outside the pressurized cabin, such as pressurized control system 
tanks, water tanks or thermal control heat exchangers.  The associated volume cost factor would be much less than the 
lower value, such as 6-11 kg/m3 for a minimal structure with MMOD barrier. 

Leakage is technology dependent.  Life support systems are designed to carry consumables to meet the 
maximum allowable leakage rate in the design specifications for the spacecraft.  In most cases the actual leakage rate 
is significantly lower than the specification. 

Currently, the United States uses the ISS common module to provide pressurized volume.  Alternately, 
inflatable modules have been suggested since the Apollo Program.  TransHab (Kilbourn, 1998, and NASA, 1999) 
presented in Table 3-7, is a robust inflatable module proposed for low-Earth orbit trials while attached to ISS.  
TransHab encloses 329.4 m³ within a primary shell with an inner surface area of 250.9 m².  A connecting tunnel 
provides access to ISS with an additional 12.6 m³.  The values in Table 3-7 include micrometeoroid protection and a 
storm shelter for radiation protection in low-Earth orbit against solar particle events.  Finally, the ISS common module 
and TransHab are designed using different design philosophies, so a rigorous comparison between the two approaches 
is not intended.  Rather, the values here document both approaches. 

Table 3-7 Masses of Inflatable Shell Components 

Item 
Mass 
[kg] References 

Inflatable Shell Assembly, including Liner, Bladder, and Restraint 1,265 Based on TransHab 
Technology.  See 
Kilbourn (1998), 
NASA (1999), and 
Atwell and Badhwar 
(2000) 

Multi-Layer Insulation 235 
Micrometeoroid and Orbital Debris Protection 3,208 
Other (Windows, Deployment and Attachment Systems) 204 
Central Core Structure, including End Cones 1,405 
Water Containment 31 (Enclosing 18.8 m³ and covering 40.1 m²) 142 
Radiation Protection Media (A 0.0574 m thick water shield; areal 
density 5.7 g/cm2) 2,304 

Initial Inflation System 502 
Avionics and Power Management and Distribution 1,398 

Total Mass 10,663 
 
Based on Table 3-7, several cost factors for various configurations of the components presented are possible 

(See Table 3-8).  While each configuration is not independently viable, they provide background for other estimates.  
The applicable volume is 329.4 m³. 

                                                           
31The water tank surrounding the crew quarters is actually integrated with the central core structure. 
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Table 3-8 Estimated Masses and Volume-Mass Penalties for Inflatable Module Configurations 

Configuration 
Mass 
[kg] 

Volume-
Mass 

Penalty 
[kg/m³] 

Volume-
Mass 

Penalty 
[m³/kg] 

All listed Inflatable Module components listed in Table 3-7 10,663 32.37 0.0309 
Previous Option without Avionics  
and Power Management and Distribution 9,265 28.13 0.0355 

Primary Shell and Central Core Only 3,016 9.16 0.1092 
Previous Option plus Multi-Layer Insulation 
and Micrometeoroid and Orbital Debris Protection 

6,459 19.61 0.0510 

Previous Option plus Initial Inflation System 6,961 21.13 0.0473 
Previous Option plus Avionics and 
Power Management and Distribution 

8,359 25.38 0.0394 

Avionics and Power Management and Distribution alone 1,398 4.24 0.2358 

3.2.3 RADIATION SHIELDING FOR TRANSHAB 

Table 3-9 contains data relating various proposed shielding materials via an inflatable TransHab structure.  
The volume is assumed to be 329.4 m3.   The areal density of shielding to protect the crew from environmental 
radiation, for a Lunar surface mission should be about 15 g/cm2.  For a longer stay such as a Mars mission the 
assumption is made that the areal density would be 20 grams per square centimeter.  However, there is a complication 
to this simplistic approach, because secondary particles can be released from the nucleus when struck by heavy and/or 
high speed radiation particles, the effectiveness of shield materials varies on a molecular level.  Thus more massive 
shield materials are more likely to produce more secondary radiation.  In general, atoms with lower atomic mass have 
less nuclear material and thus produce fewer secondary particles than the heavier nuclei.  The simple hydrogen nuclei 
contain only one proton and no neutrons; therefore they are able to absorb some of the energy of the incoming radiation 
while producing fewer additional particles.32  Radiation scientists often use areal density when comparing the 
shielding needed for various environments: 

𝝌𝝌(𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒅𝒅𝒂𝒂𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) = 𝝆𝝆(𝒅𝒅𝒂𝒂𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅) × 𝒅𝒅𝒕𝒕(𝒅𝒅𝒕𝒕𝒅𝒅𝒕𝒕𝒕𝒕𝒅𝒅𝒂𝒂𝒅𝒅𝒅𝒅)   Equation 3-1 

 

 

                                                           
32 Hydrogen nuclei contain only one proton and thus the nucleus when struck by high speed particles cannot produce multiple 

secondary radiation from each hydrogen source. 
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Table 3-9 Estimated Masses for Inflatable Modules 

ITEM (BASED ON TRANSHAB 
ARCHITECTURE) 

Mass for 
Lunar 
Mission
33 
[kg] 

Mass for 
Lunar 
Mission
34 
[kg] 

Mass 
for 
Lunar 
Mission
35 
[kg] 

Mass for 
Martian 
Mission 
36 
[kg] 

References 

Primary Structure Mass 
(Core, Shell) (1) 37 

6,961 6,961 6,961 6,961 (1) Kilbourn 
(1998) and 
NASA 
(1999) 

(2) Duffield 
(2010) 

Note: the 
surface area is 
estimated 
assuming a 
spherical 
configuration 
to relate 
volume and 
surface area. 

Shielding Mass is 0.163 m of 
polyethylene around each of 4 CMs 

covering 2.0 m2 surface area per CM. 
(2) 

1,200    

Shielding Mass is 0.163 m of 
polyethylene around the entire shell 

volume of 329.4 m3 (2) 

 34,599   

Shielding Mass is 0.079 m of regolith 
around the entire shell volume of 

329.4 m3  38 

  34,599  

Shielding Mass is 0.217 m of 
polyethylene around the entire shell 

volume of 329.4 m3 (2) 

   46,131 

Total Mass 8,161 41,560 41,560 53,092 
Volume-Mass Penalty [kg/m³] 24.8 126.2 126.2 170.3 

Volume-Mass Penalty [m³/kg] 0.0403 0.00792 0.00792 0.00587 

Including the avionics and power management and distribution masses, as listed in Table 3-8, adds an additional 
4.24 kg/m³ to the volume-mass penalties listed above.  However, these masses are often accounted for in other factors, 
such as the power-mass penalty.  Without radiation shielding or micrometeoroid protection, the primary shell and 
structure of the inflatable module has a volume-mass penalty of 9.157 kg/m³ or 0.1092 m³/kg.  This would be an 
appropriate estimate for a habitat shielded by local resources, whether regolith or in a natural feature such as a lava 
tube or cavern.  The Human Integration Design Handbook (NASA HIDH) (2014) has a more complete description of 
the radiation environment. 

3.2.4 SECONDARY STRUCTURE COSTS 
The values in the previous tables quantify the vehicle’s primary structural mass, including the pressure vessel 

and radiation shielding.  However, many systems also require additional secondary structure, such as a payload rack, 
drawers, or refrigeration.  Based on data from the International Space Station Program (Green, et al., 2000), Table 3-10 
provides estimates for secondary structure masses.  Though somewhat simplistic, the volume, power, and thermal 
control for equipment housed within or mounted to secondary structure is assumed to be identical to the values for the 
uninstalled piece of equipment.  Assuming a piece of equipment is not mounted directly to the vehicle primary 
structure; most are mounted to an International Standard Payload Rack.  Small items are placed within trays and 
drawers of a stowage rack, while some foodstuffs and experiments require the chilled climate provided by a 
refrigerator or freezer.  For example, 100 kg of food stored within a refrigerator would incur a secondary mass penalty 

                                                           
33  areal density= 15 g/cm2 
34  areal density= 15 g/cm2 
35  areal density= 15 g/cm2 
36  areal density= 20 g/cm2 
37 See the fifth configuration in Table 3-8. 
38 Note that the first three Lunar shield evaluations have the same areal density of 15 g/cm2 and the same mass per surface 

area, but not the same volume. 
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of 136 kg in addition to any power, thermal control, or volume penalties, while a 100 kg pump mounted to the vehicle 
floor would have no associated secondary mass, though power, thermal control, and volume to account for primary 
structure might still apply. 

Table 3-10 Secondary Structure Masses 

Mounting Configuration 

Secondary 
Structure Mass 

per Mass of 
Equipment 

[kg Secondary Structure 
/kg Equipment] 

Internal 
Cargo 

Volume 
[m³] References 

Directly to Primary Structure 
(No Secondary Structure) 0.00 n/a 

Information from 
Green, et al. (2000) 
except as noted. 
(1) Toups, et al. (2001) Directly to International Standard 

Payload Rack 0.21 1.57 

Within Trays of a Stowage Rack 0.80 0.9 
Within Refrigerator/Freezer Rack 1.36 0.614 (1) 

The external volume for an International Standard Payload Rack is 2.00 m³ (Rodriguez and England, 1998).  The 
Stowage Rack and the Refrigerator/Freezer Rack are derived from the International Standard Payload Rack and have 
the same external dimensions. 

3.2.4.1 LUNAR ARCHITECTURE TEAM HIGH MOBILITY SCENARIO 

The Lunar Architecture Team proposal consisted of a series of 32 Lunar missions, starting with a build-up 
mission which included four 7-day Sorties (Toups & Kennedy, 2008). It represents NASA’s most recent study of a 
human lunar mission.  The missions generally increase in length and complexity as the number of missions in the 
study increase.  The initial Sorties will carry all logistics, but as the Outpost portion of the proposal is developed, 
expendables are either sent with the crew, sent via a supply vehicle, used from stores, saved from a previous mission 
or missions, or recovered from the waste stream.  High Mobility Scenario is much more specific in the missions, the 
mission deliverables, modular development of habitat, EVAs and rovers, and other exploratory vehicles, than earlier 
LAT 2 proposals.  Major emphasis for High Mobility Scenario is on mobility for exploration.  Surface mobility was 
identified as a key element to the Constellation program and its endeavors to set up an Outpost (Bagdigian, 2009).  
Assuming this Lunar exploration architecture, life support resources, such as oxygen, nitrogen, and water, are 
deployed to various loci on the Lunar or Martian surface.  Planning must include delivery of logistical elements from 
Earth and then distribution of those elements to points of use on the Lunar surface.  Things like water and oxygen will 
need to be transported back to a central location for regeneration or cleanup and then be redistributed to points on the 
surface where they are needed. 

The High Mobility Scenario Outpost consists of a Pressurized Core Module (PCM), a Pressurized Excursion 
Module (PEM), and Pressurized Logistics Module (PLM).  There are four pressurized Lunar Electric Rovers (LER).  
The pressurized volumes are listed in Table 3-11, as well as the major functions associated with each module.  The 
PCM is assumed to house most of the regenerative environmental control and life support system (ECLSS) equipment.  
Each LER has the critical mass to support two crewmembers by using a portable utility palette (PUP). 

In order to calculate equivalent system mass for High Mobility Scenario, equivalencies are given in Table 3-12.  
A more complete accounting of the equivalencies can be obtained in (Lange, 2009). 
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Table 3-11 Primary Makeup of Pressure Vessels for High Mobility Scenario 

 
High Mobility Scenario Pressurized Volume Functions 

PCM Primary 
Habitation 

Primary 
ECLSS 

Primary 
Thermal 
ATCS 

Primary 
Command & 

Control 

Primary 
Waste & 
Hygiene 

Primary 
Communications 

PLM Logistics Store Primary 
Structure Spares Store Yes Yes Yes 

LER or 
PCC 

Rover 
Exploratory Sleep Toilet    

FSPS Nuclear 
Reactor 

May or may 
not be 
present 

    

PSU Power store & 
supply      

PUP Portable 
Utilities      
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Table 3-12 Calculated Equivalencies for High Mobility Scenario 39 

 
Parameter Value Units 

Outpost Pressurized Core Module (PCM) Pressurized Volume Equivalency 

PCM Pressurized Volume Equivalency, (Ev)PCM 49 3m
kg

 
Outpost Pressurized Logistics Module (PLM) Pressurized Volume Equivalency 

PLM Pressurized Logistics Module (PLM) (Ev)PLM  36 3m
kg  

LER Pressurized Crew Cab (PCC) Pressurized Volume Equivalency 

PCC Pressurized Volume Equivalency, (EV)PCC 100 3m
kg  

Outpost Power Supply Unit (PSU) Power Equivalency 

PSU Illuminated-Only Power Equivalency, (EP)PSU-l 43 
kW
kg  

PSU Continuous-Only Power Equivalency, (EP)PSU-C 362 
kW
kg  

Outpost Fission Surface Power System (FSPS-1) Power Equivalency 

FSPS Continuous Power Equivalency, (EP)FSPS 221 
kW
kg  

LER Battery Power Efficiency (without PUP) 

LER Power Equivalency (LER Batteries Only), (EP)LER 107640 
kW
kg  

LER/PUP Solar.Battery Power Equivalency 

LER/PUP Power Equivalency without Extra Battery Set, (EP)LER-P 7486 
kW
kg  

LER/PUP Power Equivalency with Extra Battery Set, (EP)LER-PB 11796 
kW
kg  

Outpost Thermal Equivalency without LERs 

PCM Thermal Equivalency, (ET)PCM 49 
kW
kg  

Outpost Average Thermal Equivalency without LERs 69 
kW
kg  

LER Thermal Equivalency (Ice Block Only; 3 day life) 

LER Thermal Equivalency Based on the Ice Block only 777 
kW
kg  

LER Mobility Equivalency 
LER Mobility Equivalency without PUP, (EM)LER 1.33 kg

kg  

LER Mobility Equivalency with PUP, (EM)LER-P 1.35 kg
kg  

LER Mobility Equivalency with PUP and and extra batteries, (EM)LER-PB 1.45 kg
kg  

                                                           
39 The following equivalencies were calculated by (Lange, 2009) 
40 Modified from the original Lange calculation according to estimates by Patrick George recorded via e-mail December 2009. 
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3.2.5 POWER COSTS 41 

Nuclear Reactor 
or Radioisotope

Rankine 

Stirling

Dynamic 
Conversion

Solar/Dynamic
Brayton

Static 
Conversion

Power

Dynamic 
Conversion

Rankine 

Stirling

Brayton

Thermoelectric

Thermionic

Battery

Solar Photovoltaic- 
Silicon or Gallium 
Arsenide (GaAs)

FlywheelFuel Cell

Storage

Regenerable
Fuel Cell  

Figure: 3-1  Power generation and storage options considered. 

Options for power generation, recovery, and storage considered here, and their general inter-relationship, are 
presented graphically in Figure: 3-1.  Table 3-14 outlines the power options with data available from the literature.  
Consideration was given to all the processes listed in Figure: 3-1, but the table presents only those technologies with 
available data.  The generalized cycles and processes are briefly discussed in the following paragraphs. 

Figure: 3-1 lists the solar and nuclear power options considered for near-term human exploration missions.  
The three cycles presented here are dynamic conversion cycles: the Rankine, Brayton, and Stirling cycles.  These 
cycles are applicable for conversion of heat to current flow whether the heat is generated by an environmental source 
such as the Sun or possibly heat produced by nuclear fission or radioisotopic decay.  Dynamic cycles may emit 
vibrational loads, but they can be integrated with or into balanced machines.  Static cycles, though lacking vibrational 
emissions, are typically less efficient than their dynamic counterparts.  Each cycle has attractive features which tend 
to manifest at different locations and operating conditions. 

The Rankine cycle operates via a working fluid phase change.  The working fluid is typically a liquid metal 
or an organic fluid.  At constant pressure, which is typical for this approach, the process offers isothermal heat 
rejection.  Because the heat-rejection-phase of power generation is isothermal, power can be obtained at relatively low 
operating temperatures and, theoretically, at higher efficiencies than the Brayton cycle.  The Rankine cycle uses a 
liquid, typically a liquid metal, which passes through a heat exchanger to vaporize a working fluid, which then passes 
through turbo machinery, releasing work, and re-condenses. 

Characteristic of the Brayton cycle is a single-phase working fluid which typically requires smaller radiators.  
The cycle is often used in a turbine to convert heat to current flow by pressurizing the air in a piston, adding fuel, and 
then igniting the mixture to trigger an expansion cylinder.  The expanding gas drives a turbine releasing work. 

The Stirling cycle is also single-phase with efficiencies theoretically close to those of the ideal Carnot cycle.  
The Stirling cycle uses a fixed mass of gas sealed inside the engine.  Stirling engines are quiet since there are no 
explosions or high pressure gas releases.  The process is controlled by external heating and cooling of the sealed gas.  
The major drawback of this cycle is the relatively slow response time of the sealed gas to external heating and cooling.  
Thus, this cycle tends to favor smaller engines at lower power levels, so if larger amounts of power are needed several 
smaller reactors operate in parallel which increases overall system mass.  A comparison of the Brayton, Rankine and 

                                                           
41 The authors wish to thank Robert L. Cataldo of the NASA’s Glenn Research Center for his inputs and poignant comments 

on the makeup and structure of this power section. 
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Stirling Power Module Characteristics (Frisbee and Hoffman, 1993), based on the SP-100 Nuclear Reactor Proposal 
for Mars Cargo Missions, is given in Table 3-13. 

Table 3-13 Power Module Characteristics for Nuclear Reactor Proposals 42 

   Cycle  
Item Units Rankine Stirling Brayton 
Reactor Full Power Projected 
Operating Life y 7.4 9.6 7.6 

Operating Temperature K 1,355 1,355 1,355 
Average Radiator Temperature K 788 567 469 
Radiator Platform Area m² 90 183 531 
Radiator Physical Area m² 128 282 821 
Auxiliary Radiator Area m² 25 25 25 
Stowed Dimensions     

Length m 12.2 16.9 28.3 
Diameter m 5.5 5.5 5.5 

Number of modules /launch -- 3 2 1 
Power Module Masses     

Reactor and Controls kg 841 841 841 
Shield kg 1,396 1,396 1,396 
Primary Heat Transport kg 895 807 1,104 
Power Conversion System kg 933 6,293 3,302 
Heat Rejection & Transport kg 1,066 420 1,157 
Heat Rejection Radiator kg 1,733 3,078 7,063 
Parasitic Load Radiator kg 140 140 140 
Total Module Mass kg 7,004 12,975 15,003 

Module Power and Efficiency     
Thermal Power kWth 2,356 1,850 2,309 
Electric Power, gross kWe 578 596 582 
System Power kWe 6 20 10 
Net Power kWe 572 576 572 
System Efficiency % 24 31 25 

System Power-Mass Penalty 43 kg/kWe 12 23 26 

Several static conversion approaches exist.  Two approaches that are of interest to NASA are thermionic and 
thermoelectric energy conversion.  Several approaches also exist to make use of local insolation.  The most prevalent 
are solar photovoltaic cells and solar dynamic systems, while thermionic Photon Chips™ are a recent development. 

Thermionic energy conversion is the direct production of electric power from heat by thermionic electron 
emission.  From a thermodynamic viewpoint, it is the use of electron vapor as the working fluid in a power-producing 
cycle.  A thermionic converter consists of a hot emitter electrode from which electrons are vaporized by thermionic 
emission and a colder collector electrode into which they are condensed after conduction through the inter-electrode 
plasma.  The resulting current, typically several amperes per square centimeter of emitter surface, delivers electrical 
power to a load at a typical potential difference of 0.5-1 volt and thermal efficiency of 5–20%, depending on the 
emitter temperature (1,500–2,000 K) and specific mode of operation. 

Thermoelectric systems rely on the Seebeck effect where two dissimilar materials create a voltage at the 
material interface when exposed to a temperature gradient.  Systems relying on thermoelectric conversion tend to have 
low efficiencies. 

Solar photovoltaic (PV) cells have powered NASA probes in the inner Solar System for decades and, more 
recently, the International Space Station.  According to ESAS (2005), solar PV cells are likely to power the Crew 

                                                           
42 Brayton, Rankine, and Stirling power module characteristics according to Frisbee and Hoffman (1993).  The assessments 

are sized based on the SP-100 nuclear reactor proposal for Mars cargo missions with approximately 600 kWe of total power 
capacity.  Note that most near-term to mid-term mission scenarios do not require that much power on the surface of Mars. 

43 This quantity is also known in the literature as the “system specific mass.” 

http://en.wikipedia.org/wiki/Electric_power
http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Thermodynamic
http://en.wikipedia.org/wiki/Plasma_%28physics%29
http://en.wikipedia.org/wiki/Amperes
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Exploration Vehicle.  Finally, solar PV cells are being considered for human vehicles on the surface of Mars where 
temperatures vary from 130 K to 300 K.  Cell performance increases with decreasing temperature, with peak 
efficiencies occurring at 150-200 K according to Landis and Appelbaum (1991).  Some materials, such as silicon, 
increase in performance rapidly in PV cells at the relatively low temperatures found on Mars. 

Solar dynamic systems for surface applications concentrate incident solar radiation using a spectral parabolic 
mirror and achieving high temperatures at a focal point to drive a generator.  Local dust is an obstacle to this approach 
as the dust blocks some of the incident photons preventing them from reaching the collector. 

Choices among conversion cycles are quite complex and choices among theoretical advantages sometimes 
suffer from engineering challenges and do not realize their full potential.  Some cycles do offer greater maturity, but 
none of the cycles have demonstrated long-term reliability in space applications yet.  Table 3-14 lists many power 
system options, and is divided into options by usage locale, power generation source, and vehicle type, with systems 
for similar vehicles being grouped together.  Lee and Duffield (2006) provide additional details for many of the 
systems presented, and this work should be consulted by readers who desire more than what are given below.  Power 
mass penalties are provided in terms of kg/kWe for power generation systems that do not use consumables, while 
energy storage devices with consumables or power generation via consumables are characterized by energy-mass 
penalties in terms of kg/kWeh.  Several systems below are rated separately for non-consumable power generation 
technologies and consumable storage technologies, and both factors should be assessed during for impacts on 
equivalent system mass if power is required when by the system under study when both power systems are in use 
during the projected mission.  A brief discussion and further information on batteries (Table 3-15) and fuel cells 
(Table 3-16) follow Table 3-14. 

Generally, solar power systems grow linearly with power required while nuclear power systems have a high 
initial mass, especially for shielding.  With a nuclear power system, adding small amounts of generating capacity with 
respect to total power generating capacity adds little to the overall system mass.  For example: starting with a 25 kWe 
nuclear plant with a mass of 6000 kg, doubling the power output to 50 kWe increases the overall mass to approximately 
8000 kg.  Doubling the power output again to 100 kWe increases the mass to around 11,000 kg (Cataldo, 2006). 
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Table 3-14 Power Option Summary 

 
System Kg/kWe Kg/kWeh Comments References 

Static Power Options in Low Earth Orbit44:   

Concentrating Photovoltaic 
Cells; Solar Photovoltaic 
Cells w/o Storage (1) 

n/a  34 to 40% efficient projected in 8-11 years; 
Department of Energy Projection 

(1) Mehos, et al. (2001) 
(2) Piñero, et al. (2002) 
(3) Littman (1994) 
(4) Hanford and Ewert (1996) 
(5) Lee and Duffield (2006) 
(6) Eagle Engineering (1988) 
(7) Landis, et al. (1999) 
(8) Eagle-Picher (2003) 
(9) ISS (1999) 
(10) Patel (2005) 
(11) Landis and Appelbaum 

(1991) 
 

Solar Photovoltaic Cells 
w/ Hydrogen Oxygen Fuel 
Cell Storage (4, 5, 6) 

41 1.1 
11% efficient producing 100 kWe; Shuttle 
technology with a six day mission or Lunar 
base solar power plant study. 

Solar Photovoltaic Cells 
w/o Structure 
w/o Energy Storage 
Structure (Calculated from 5, 7, 8, 9, 

10) 

101  
10 to 15% efficient producing 28 kWe; 
Subtracted the mass of the structure batteries 
and related items. 

Solar Photovoltaic Cells 
w/ Battery Storage (5, 7, 8, 10) 133 20.8 

10 to 15% efficient producing 28 kWe; Does 
not include the main supporting truss (P6); 
ISS 

Solar Photovoltaic Cells 
w/ Battery Storage (5, 11) 166 45 20.8 

20% efficient is the goal for thin film solar 
arrays; 35-40% efficient is the goal for 
advanced concepts producing 100 kWe; 46 
Best specific power to 1991 for earth orbit 
solar intensity. 

Solar Photovoltaic Cells 
w/o Storage; Includes 
Support Structure (4, 11) 

239  Up to 14% efficient; In sun power only with 
deployable PV cells 

Solar Photovoltaic Cells 
w/ battery storage (4) 476 29 10 to 15% efficient producing 28 kWe; 

Continuous power with deployable cells. 

Dynamic Conversion Power Options in Low 
Earth Orbit:  

Solar w/ Stirling Dynamic 
Power Production (6) 405  26% efficient producing 100 kWe  

  

                                                           
44 Specific Power is usually given for low Earth orbit conditions.  Values at the surface of Mars can be estimated by 

multiplying by the ratio of Mars solar intensity to low Earth orbit solar intensity according to Landis, et al. (1999). 
45 Projected value based on components. 
46 Flight tested system is 15 kg/kWe (Landis and Appelbaum, 1991).  Current system is 7.7 kg/kWe.  Combining existing 

technology with gallium-arsenide, GaAs, at 3.3 kg/kWe, adds to the existing technology specific mass. 
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Table 3-14 Power Option Summary 
 
System kg/kWe kg/kWeh Comments References 

Solar Conversion Power Options for the Surface of the Moon 
Solar Voltaic Power generation at 
Lunar Equator w/o Storage (22, 23) 54  n/a efficient; Tracking PV arrays (6) Eagle Engineering (1988) 

(22) Hughes (1995) 
(23) Ewert, et al. (1996) 
(24) Harty and Durand (1993) 
(25) Juhasz and Bloomfield (1994) 
(26) Mason (2006) 
(27) Kerslake (2005) 
 

Solar w/ Stirling Dynamic Power 
Production (6) 405  26% efficient producing 100 kWe 

Solar Voltaic Power Generation 
at Lunar Equator 
w/ Fuel Cell Storage (22, 23) 

749 4 n/a efficient; Tracking PV arrays 

Nuclear Conversion Power Options on the Surface of the Moon  
Nuclear w/ Brayton Dynamic 
Power Production (24) 29  n/a efficient producing 550 kWe 

 
Nuclear w/ Brayton Dynamic 
Power Production (25) 76  n/a efficient producing 20 kWe 

Nuclear refractory reactor w/ 
Brayton Dynamic Power 
Production; Moon or Mars (26) 

77 47  
23.5% efficient 
producing 55 kWe; direct high-
temperature Brayton 

Nuclear refractory reactor w/ 
Stirling Dynamic Power 
Production; Moon or Mars (26) 

149  
23.5% efficient 
producing 31 kWe; Lithium liquid 
metal 

 

Nuclear refractory reactor w/ 
Thermoelectric Power 
Production; Moon or Mars (26) 

349  4.1% efficient producing 16 kWe; 
Lithium and SiGe  

Nuclear Fission w/ Brayton 
dynamic conversion (27) 125  n/a efficient producing 50 kWe  

Nuclear Fission w/ Stirling 
dynamic conversion (27) 120  50 kWe  

Nuclear Fission w/ thermoelectric 
static conversion (27) 136  50 kWe  

                                                           
47 A comparison with a stainless steel reactor resulted in superior performance for the refractory reactor for Brayton, Stirling, 

and Thermoelectric options (Mason, 2006). 
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Table 3-14 Power Option Summary 
System kg/kW kg/kWeh Comments References 
Solar Conversion Power Options on the Surface of Mars 
Solar Photovoltaics w/o Storage (28) 149  28% efficient; Static solar power 

at an equatorial site on Mars 
 (3) Littman (1994) 
(28) NASA (1989) 
(29) Cataldo (1998) 
(30) Hoang, et al. (1988) 
 

Solar Photovoltaic Cells 
w/ Fuel Cell Storage (29) 178 10 

30% efficient; PV cell; Power 
generated at an equatorial site on 
Mars 

Solar Photovoltaic Cells 
w/ Fuel Cell Storage (29) 228 10 20% efficient; Power generated at 

an equatorial site on Mars 
Solar Photovoltaic Cells w/ Fuel Cell 
Storage (28) 338 n/a Static solar power at an equatorial 

site on Mars  

Nuclear Conversion Power Options on the Surface of Mars  
Nuclear w/ Static Thermoelectric 
Power Production (29) 54  

n/a efficient; Emplaced in 
excavated hole; Excavation 
equipment is included 

 

Nuclear w/ Static Thermionic Power 
Production (3) 55  n/a efficient producing 75 kWe; 

Conceptual design  

Nuclear w/ Static Thermoelectric 
Power Production (29) 75  

22% efficient producing 160 kWe; 
On a self-deployed cart two 
kilometers from base. 

 

Nuclear w/ Static Thermoelectric 
Power Production (3) 87  n/a efficient producing 100 kWe; 

On independent lander  

Small Radioisotope Power Systems (30) 88  n/a efficient producing 2 kWe  
Nuclear w/ Stirling Dynamic Power 
Production (29) 88  

n/a efficient producing 100 kWe; 
Shielding included; 
Conceptual design; Stirling 
Engine 

 

Nuclear w/ Static Thermionic Power 
Production (3) 107  n/a efficient producing 25 kWe; 

Conceptual design  

Nuclear w/ Static Thermoelectric 
Power Production (29) 226  

n/a efficient producing 100 kWe; 
On mobile cart; Shielding 
included 

 

Energy storage devices for spacecraft with human crews come in two common forms, which are batteries, 
per Table 3-15, and fuel cells, per Table 3-16.  The differences between batteries and fuel cell capabilities are not easy 
to discern.  The rate and quantity of a battery discharge cycle is not equivalent to the availability of energy from a fuel 
cell.  After installing a fuel cell’s components, a fuel cell will output its full rated power continuously if supplied 
sufficient reactants.  A battery, however, degrades with each discharge cycle and must be replaced more frequently 
than the components of a comparable fuel cell. 
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Table 3-15 Characteristics of Advanced Rechargeable Batteries 48 

Battery Technology 

Cell Energy 
Density 
[W●h/L] 

Cell Specific 
Energy 

[W●h/kg] 

Operating 
Temperature 

[°C] 

Number of 
Discharge 
Cycles in 
Cell Life 
[Cycles] 

Depth of 
Discharge 
per Cycle 

[%] 

Technology 
Readiness 

Level 
“State of the Art” 
Nickel-Hydrogen 
(Ni-H2) 

40 
to 50 

30 
to 40 -5 to 30 60,000 30 9 

Lithium-ion with 
Liquid Electrolyte 

200 
to 300 

100 
to 150 -40 to 65 1,500 60 5 to 9 

Lithium-Solid 
Polymer Electrolyte 

300 
to 450 > 200 0 to 80 1,500 60 3 

Lithium-Solid 
Inorganic Electrolyte > 300 > 200 0 to 80 > 10,000 60 1 to 2 

Table 3-16 Advanced Fuel Cell Systems 49 

Technology 

Energy-
Mass 

Penalty 
[kg/kWeh] Lifetime 

Technology 
Readiness 

Level 
“State of the Art” Alkaline Fuel Cell 8 50 n/a 9 
Polymer Electrolyte Membrane 4 n/a 4 to 5 
Direct Methanol 4.5 51 n/a 2 to 4 
Solid Oxide n/a n/a 2 to 3 52 
Regenerative Systems based on Polymer 
Electrolyte Membrane or Solid Oxide n/a n/a 3 

3.2.6 THERMAL CONTROL COSTS 
Table 3-17 presents options for thermal control “costs” assuming an internal and an external thermal control 

system.  Internal thermal control system masses primarily depend on the overall thermal load.  External thermal control 
“costs” vary according to the magnitude of the thermal load and the ease of rejecting thermal loads from the vehicle 
and, therefore, depend heavily on both site and vehicle configuration.  The values in Table 3-17 are representative of 
typical external thermal control system “costs” for the conditions listed.  Lighter, more cost-effective thermal control 
options exist, but the values here provide representative or typical values for most design studies.  They assume a 
traditional thermal control system architecture employing both an internal and an external thermal control system. 

• Note: The cost of a complete thermal control system is the sum of the internal thermal control system 
cost plus the appropriate external thermal control system cost. 

• Note: The inverse thermal-control-mass penalties, given in kW/kg, may not be summed directly.  
Rather, only the reciprocal values, given in terms of kg/kW, may be summed directly. 

                                                           
48 See Davis, et al. (2005). 
49 Information from Davis, et al. (2005) except as noted. 
50 See NASA (2002). 
51 See Larminie and Dicks (2003) for details. 
52 This technology is available commercially, but there has been little testing for aerospace applications. 
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Table 3-17 Advanced Mission Thermal Control Costs and Equivalencies 

Internal Thermal Control System Cost   
Vehicle/Site 
Independent kg/kW kW/kg Comments References 

Flow Loop 
with Heat Acquisition 
Devices 

~25 (1) ~0.040 Half of the Heat Load is 
acquired by Coldplates. 

(1) Estimated from 
Hanford and 
Ewert (1996) and 
Ewert, et al. (199
9) 

(2) Hanford and 
Ewert (1996) 

(3) Estimated from 
Hanford and 
Ewert (1996) and 
Hanford (1998) 

(4) Estimated. 

External Thermal Control System Cost 
Options  

Transit or Low-Earth 
Orbit kg/kW kW/kg Comments 

Current Technology, 
Vehicles: 
Flow-Through 
Radiators Only 

30.4 (2) 0.0329 

Shuttle Technology: 
Aluminum, Body-Mounted 
Radiators with Silver 
Teflon Surface Coating. 

Lightweight, Flow-Through 
Radiators Only ~20 (4) ~0.05 As above with Composite, 

Flow-Through Radiators. 
Flow-Through Radiators 
with a Supplemental 
Expendable Cooling 
Subsystem 

40.0 (2) 0.0250 

“Current Technology, 
Vehicles,” with an 
additional Flash Evaporator 
Subsystem. 

Lightweight, Flow-Through 
Radiators with a 
Supplemental Expendable 
Cooling Subsystem 

~30 (4) ~0.033 As above with Composite, 
Flow-Through Radiators 

 

Current Technology, 
Space Stations: 
International Space 
Station 53 

323.9 (2) 0.00309 

ISS Technology: 
Aluminum, Anti-Sun 
Tracking Radiators with Z-
93 Surface Coating. 

 

Surface – Moon kg/kW kW/kg Comments Notes 

For an Equatorial Site using Horizontal Radiators with Silver Teflon Coating • The cost of a 
complete 
thermal control 
system is the 
sum of the 
internal thermal 
control system 
cost plus the 
appropriate 
external 
thermal control 
system cost. 

• Inverse values, 
given here in 
kW/kg, may 
not be summed 
directly. 

Current Technology: 
Flow-Through 
Radiators Only 

221 (1) 0.0045 Aluminum, Surface-
Mounted Radiators 

Lightweight, Flow-Through 
Radiators Only ~190 (4) ~0.0053 As above with Composite 

Radiators. 
Flow-Through Radiators + 
Solar Vapor Compression 
Heat Pump (SVCHp) 

77 (1) 0.013 
Aluminum, Surface-
Mounted Radiators 
with SVCHp 

Lightweight, Flow-Through 
Radiators with Solar Vapor 
Compression Heat Pump 

~72 (4) ~0.014 As above with Composite 
Radiators. 

  

                                                           
53 The value includes significant structures to attach or rotate the thermal radiator clusters. 
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Surface – Mars kg/kW kW/kg Comments  
For an Equatorial Site using Vertical Radiators with Silver Teflon Coating 
Current Technology: 

Flow-Through 
Radiators Only 

~145 (3) ~0.0069 Aluminum, Surface-
Mounted Radiators 

Lightweight, Flow-
Through Radiators Only ~121 (3) ~0.0083 As above with Composite 

Radiators. 

The values in Table 3-17 come from a variety of sources.  The internal thermal control system values are 
derived from studies of a Lunar base, but they are considered typical of other enclosed cabins.  The transit vehicle 
external thermal control system estimates are based on Shuttle technology.  The primary heat rejection technology is 
radiators while an evaporative device, a flash evaporator, provides supplemental cooling.  Transit vehicle external 
thermal control system estimates are provided both with and without supplemental evaporative cooling devices.  
Because a vehicle cannot reject heat using radiant transfer while aero-capturing or entering a planetary atmosphere, 
some other technology, like evaporative cooling, supplements the radiators.  Vehicles that do not experience 
aerodynamic heating may employ an external thermal control system without any evaporative cooling.  The external 
thermal control system value for the International Space Station includes significant penalties for thermal-control-
system-specific structure that is not necessary for transit vehicles with their lesser heat loads.  See Hanford and Ewert 
(1996) for a detailed disposition of International Space Station external thermal control system masses. 

Options for cooling habitats at a Lunar surface site rely on horizontal radiators.  Some options also employ a 
vapor compression heat pump powered by a dedicated solar PV array.  While the heat pump is only available while 
the Sun is above the local horizon, the radiators alone for this option are sized to reject the design load in the absence 
of sunlight.  All options assume an equatorial site, which is the most severe for the Lunar surface. 

Finally, the external thermal control system options for the Martian surface employ only radiators sized for 
the worst environmental conditions expected at an equatorial site, which is a moderate dust storm, and assume that 
the environment does not impact the radiator surface properties.  Sites in the Martian southern hemisphere can be 
more severe thermally than equatorial sites. 

For each external thermal control system option above, less massive approaches are available with additional 
mission restrictions.  In particular, the options listed with lightweight radiators are conservative approximations and 
research will reduce equipment masses further than these estimates imply.  See Weaver and Westheimer (2002).  Thus, 
the technologies here are generally available but are far from optimal for specific applications. 

3.2.7 CREWTIME COSTS 
Life support equipment requires crewtime for operations and maintenance.  This time can be small for some 

systems and large for others.  Notably for functions related to food – food production, food product preparation, meal 
preparation, and waste disposal – the crewtime may be very large.  The cost of crewtime is derived from the life 
support system equivalent system mass (ESM) and the crewtime available.  Typical equivalencies vary from about 
0.1 to 10 crewmember-hours per kg of ESM.  Section 3.3.4 provides additional details. 

3.2.8 LOCATION FACTORS 
Location factors 54 describe the additional resources necessary to move a mass of payload from low-Earth 

orbit to some location elsewhere in space.  The additional resources here refer to propulsion assets such as engines, 
fuel, tankage, and associated propulsion-related structure. 55  Specifically, a location factor represents the additional 
mass necessary in low-Earth orbit to push a mass of payload to a particular destination.  Location factors allow 
comparisons between cases where all payloads do not share the same transportation history.  In other words, one 
payload option may stay entirely aboard one vehicle during the entire mission, while another payload option may 
jettison mass midway through the mission and thus reduce its associated propulsion costs for the remainder of the 
mission.  ESM GD (2003) details the use of location factors within equivalent system mass assessments. 

                                                           
54 Some researchers use the term “gear ratio” for “location factor.”  However, these terms refer to the same concept. 
55 Recall that cabin structure, power, thermal control, and crewtime costs or penalties are already assessed with other factors. 
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Location factors for two destinations, Moon and Mars, are presented in Table 3-18.  Estimates for Mars 
assume the Mars Dual Lander architecture, while estimates for the Moon are based on the L1 Gateway architecture.  
Values for the Moon based on ESAS (2005) are presented in RMD (2008).  Both sets of estimates in Table 3-18 
assume chemical propulsion and aero-braking when possible. 56 

Transfer Vehicles travel from low-Earth orbit to Lunar or Mars orbit, and return to low-Earth orbit.  The first 
estimate is for a round trip to one of the aforementioned bodies, while the second estimate is for payloads that only 
travel to the celestial body and then remain behind when the Transfer Vehicle returns. 

Landers travel from low-Earth orbit to either the Lunar or Martian surface and, in some cases, back to orbit.  
For example, within the Mars Dual Lander architecture there are two landers.  The first, the Mars Descent / Ascent 
Lander, travels to Martian orbit robotically.  In orbit, the Mars Transit Vehicle rendezvous with the Mars Descent 
/ Ascent Lander and the crew transfers to the latter vehicle for the trip to the Martian surface.  At the end of the surface 
stay, the Mars Descent / Ascent Lander returns the crew to Martian orbit and the Mars Transit Vehicle for the trip 
back to Earth.  The second lander, the Surface Habitat Lander, travels and lands robotically on Mars.  The crew 
transfers to the Surface Habitat Lander once they are on the surface. 57 

Table 3-18 Location Factors for Near-Term Missions 

 Location Factor [kg/kg]  
Mission Element (Segment) lower nominal upper Reference 
Moon    (1) ESAS (2005) 

(2) Personal 
Communication 
with J. Geffre in 
2003 

(3) Personal 
Communication 
with J. Geffre in in 
2004 

Lunar Transfer Vehicle (Full Trip)  9.1:1 (1)  

Lunar Transfer Vehicle 
(Earth Orbit to Lunar Orbit then 
destroyed with the Service 
Module) 

 7.3:1 (1)  

Lunar Lander (Earth Orbit to Lunar 
Surface and back to Lunar Orbit)  13.8:1 (1)   

Lunar Lander (Earth Orbit 
to Lunar Surface Only)  7.2:1 (1)  

 Mars 58    
Mars Transfer Vehicle (Full Trip) 5.77 (2) 5.77 (2) 10.14 (2) 
Mars Transfer Vehicle 

(To Mars Orbit Only) 2.16 (3) 2.16 (3) 3.37 (3)  

Mars Lander (Earth Orbit to 
Martian Surface and back to 
Martian Orbit) 

9.50 (2) 9.50 (2) 14.83 (2) 
 

Mars Lander (Earth Orbit 
to Martian Surface Only) 2.77 (2) 2.77 (2) 4.33 (2) 

Per ESM GD (2003), location factors multiply the equivalent system masses to which they apply.  The 
location factors given in Table 3-18 have units of “kilograms of total vehicle in low-Earth orbit divided by kilograms 
of life support hardware [payload] in low-Earth orbit.”  Thus, an equivalent system mass corrected for location is the 
product of the equivalent system mass contributions due to the physical attributes of the hardware and the location 
factor. 

Example: A piece of equipment with an equivalent system mass of 2.0 kg as payload on a Mars Transfer 
Vehicle using nominal technology would have an equivalent system mass corrected for location of 11.54 kg if it 

                                                           
56 Advanced propulsion concepts may yield much lower location factors in the future, but development of advanced propulsion 

systems for human space flight currently has high programmatic risks. 
57 “Mars Transit Vehicle,” “Mars Descent / Ascent Lander,” and “Surface Habitat Lander” are specific names for vehicles 

from the Mars Dual Lander architecture.  “Transfer Vehicle” and “Lander” are more generic names used here to differentiate 
between two types of vehicles that commonly appear in NASA advanced studies. 

58 Mars Dual Lander architecture. 
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remains on board during the entire mission from Earth, to Mars, and back again to Earth.  Or, equivalently, this value 
may be expressed as an equivalent system mass is 2.0 kg for the payload hardware and other payload equivalencies 
and an additional 9.54 kg in equivalent system mass for propulsion and other vehicle infrastructure in low-Earth orbit 
to move the payload to Mars and back. 

Alternatively, location factors in Table 3-18 may be expressed as ratios.  Thus, the location factor for a full 
trip to and from Mars aboard a Mars Transfer Vehicle may be expressed as 5.77 kg of additional mass in low-Earth 
orbit for every 1 kg of payload that travels to Mars and back, or, in shorthand notation, 5.77:1.  Using this approach 
yields the same result as the second form in the example above. 
 

Table 3-19 Equivalencies Based on Hardware Delineated During the Second Lunar Architecture Study of 
the Constellation Program 

   CEV59 Lunar Lander Lunar  Outpost 

Power Transport  kg/kWe 91.9  27.6  

72.1 (day)/ 
605.1 (night) 

Power 
Generation 

 kg/kWe 14.5  11.3  

Power Storage  kg/kWe 13.0  0.504  
Total Power 
Penalty 

 kg/kWe 125.9  67.2  

Structures  kg/m3 101.3 3 86.4 25.8 
Total Thermal  kg/kWth   48.5 
Thermal 
Components 

Coldplates & 
related articles 

kg/kWth 50.9  105.3 

 Radiator 
Rejection 

kg/kWth 59.7  40.8 

 Evaporative 
Cooling 

kg/kWth 110.6  28.42 

 Ascent & 
Rentry 

kg/kWth 14.6  11.6 

 

 CREW CHARACTERISTICS 

As the life support system’s primary purpose is to maintain the crew, the crew characteristics will drive 
equipment requirements.  From an analysis perspective, the human metabolic rate and available time are necessary 
input values. 

In section 3.3.1 the crew metabolic rate is described according to equations developed during a prior update 
of the NASA HIDH (2014) reference.  The Constellation program also developed a Table 3-22 , giving metabolic 
rates for sleep and exercise as well as nominal activities, which are being used for Orion. In section 3.3.2, additional 
metabolic profiles for exercise have been added as potential design cases for longer exploration missions. Final 
determination will depend on decisions about exercise devices and protocols for various missions. 

3.3.1 CREW METABOLIC RATE 
Metabolic activity as a result of conversion of food to energy by the crew affects air revitalization and heat production 
directly but will also affect water use, waste production, and power consumption.  The NASA HIDH (2014) lists 
empirical equations for calculating metabolic energy requirements as shown in Table 3-21.  Here, crewtime is 
expressed in “crewmember-hours” (CM-h) or “crewmember-days” (CM-d) where the prefix “crewmember” (CM) 
identifies a single individual conducting a task for the appended duration.  Actual metabolic rate varies with lean body 
mass, environment, and level of physical activity.  However, because lean body mass data is difficult to collect, a 
combination of total body mass and gender are often substituted for this parameter.  Embedded in this substitution is 
the generalization that males have a greater percentage of lean tissue than females for the same total body mass.  Thus, 
NASA HIDH (2014) defines the crewmember mass range from a 95th percentile American male, with a total body 

                                                           
59 Crew Exploration Vehicle (CEV), a predecessor of Orion 
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mass of 99 kg, to a 5th percentile Japanese female, with a total mass of 53 kg (See Table 3-20).  Metabolism increases 
due to physical exertion and a heavy workload can generate more than 800 W/CM of thermal loading.  Few people 
can continue this level of exertion for long, though the total energy expenditure for an exceptionally active 82 kg male 
could be as high as 18 Mega Joule per Crew Member-day (MJ/CM-d) (208.3 W/CM) of thermal loading on the crew 
cabin or extravehicular mobility unit (Muller and Tobin, 1980).  Thus, EVA, as noted in Section 4.6, and exercise 
protocols can elevate metabolic rate.  This data does not account for any metabolic effects due to low gravity.  Data 
given in following sections are scaled for low and high levels of activity and for small and large people.  The values 
derived using Equation 3-2 and Equation 3-3 account for a moderate level of crew activity.  
 

Table 3-20 Crewmember Mass Limits 

 
  Limits  

 Units 
Lower (5% 

female) 
mean 
male 

Upper (95% 
male) Reference 

Crewmember Mass kg 54 82.00 99 From NASA HIDH 
(2014). 

 

Table 3-21 Human Metabolic Rates 

Gender Age [y] Metabolic Rate 60 [MJ/CM-d] Reference 

Male age 40, 1.829 m (6 ft), 82 kg 12.996 NASA HIDH 
(2014) modified 

Female age 40, 1.829 m (6 ft), 82 kg 11.292  
 

Human Metabolic Rate Equation males > 19 years of age: 

�
622 − 9.53 ×  age(years) + 1.25�15.9 ×  mass(kg) + 539.6 ×  ht(m)�

0.238853 × 103
�

= Energy
MJ

CM − d
 

Equation 3-2 
 

Human Metabolic Rate Equation females > 19 years of age: 

�
𝟑𝟑𝟑𝟑𝟑𝟑 − 𝟔𝟔.𝟗𝟗𝟗𝟗 ×  𝐚𝐚𝐚𝐚𝐚𝐚(𝐲𝐲𝐚𝐚𝐚𝐚𝐲𝐲𝐲𝐲) + 𝟗𝟗.𝟐𝟐𝟑𝟑�𝟗𝟗.𝟑𝟑𝟔𝟔 ×  𝐦𝐦𝐚𝐚𝐲𝐲𝐲𝐲(𝐤𝐤𝐚𝐚) + 𝟕𝟕𝟐𝟐𝟔𝟔 ×  𝐡𝐡𝐡𝐡(𝐦𝐦)�

𝟎𝟎.𝟐𝟐𝟑𝟑𝟐𝟐𝟐𝟐𝟑𝟑𝟑𝟑 × 𝟗𝟗𝟎𝟎𝟑𝟑
�

= 𝐄𝐄𝐄𝐄𝐚𝐚𝐲𝐲𝐚𝐚𝐲𝐲
𝐌𝐌𝐌𝐌

𝐂𝐂𝐌𝐌 − 𝐝𝐝
 

Equation 3-3 

 

3.3.2 EXPLORATION METABOLIC LOADS 
 
The vehicle ECLSS needs to be able to handle the crew metabolic loads during the mission.  In addition to 

nominal IVA, there also needs to be provision for crew exercise in order to keep the crew healthy and eliminate muscle 
degeneration.  On ISS, each crewperson typically exercises for more than 30 minutes a day on the exercise devices.  
Future exploration type missions will likely use different types of exercise devices and possibly for different durations.  

                                                           
60 The metabolic rate is the product of a basal rate and an activity factor.  The basal rate, in parentheses, depends on 

crewmember mass [kg], m, and a second, mass-independent coefficient.  The activity factor here is correlated as a function 
of gender while the other coefficients are correlated as functions of both gender and age. 
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The Oxygen use and Carbon Dioxide output are directly proportional to the crewperson metabolic rate but the heat 
output and perspiration rate is dependent on the cabin conditions as well as the crew physiology.  The metabolic rate 
will be split into sensible heat rejection, latent heat rejection, crew stored heat and a minor work done due to the 
exercise device.  The crew will continue to release the stored heat from the exercise for as much as one hour after the 
completion of the exercise.  The size of the crewperson will also impact the vehicle ECLSS as the larger crewmembers 
generally have a higher metabolic rate. 

3.3.2.1 SHORT DURATION MISSION METABOLIC LOADS 

Table 3-22 provides a listing, in SI units, of the design metabolic outputs per crewmember for short duration 
missions on Orion.  Values given in Table 3-22 represent projected crew induced metabolic loads or thermal loads 
from a single crewmember.  So, in addition to hardware induced thermal loads, a human vehicle must accommodate 
crew induced loads.  For this assessment during vehicle design, assume only one crewmember will exercise at a time 
and other crewmembers will remain at the nominal awake activity level.  Total thermal loading from a single heat 
load component includes direct radiant thermal emission and heat convection from a crewmember.  A crewmember 
metabolic load is the sum of the sensible (dry heat load) plus the total latent (wet heat load).  The total latent heat load 
includes moisture carried by exhaled gases, evaporated sweat from the skin or worn clothing, and sweat run-off.  For 
purposes of vehicle design modeling, oxygen consumption and carbon dioxide production are assumed to be maximal 
during exercise, and they are assumed to return to nominal values as soon as the crewmember ceases exercising. 

Using the 41-Node Metabolic Man algorithm and the judgment of a team of experts assembled to evaluate 
metabolic rates for the NASA HIDH (2014), the metabolic outputs and requirements are listed in Table 3-22 and were 
computed assuming the following inputs: the cabin air temperature is 294.3 K, the cabin dew point is 283.2 K, the air 
velocity is 0.152 m/s, the overall cabin pressure is 70.3 kPa, the crewmember’s gender is male with a mass of 82 kg, 
the assumed maximal rate of oxygen uptake by the whole-body during exercise (VO2 max) is 45 mL/kg-min., the 
efficiency for the exercise device is 5 %, and the respiratory quotient is 0.92.  Each crewmember’s exercise routine is 
assumed to be 30 minutes long followed by 60 minutes to recover and return to the nominal awake metabolic level in 
a weightless environment.  The crewmember’s assumed clothing is a T-shirt and shorts.  See Tucker (2006) for details. 

Table 3-22 includes oxygen consumption and carbon dioxide production values for each of the listed 
metabolic output values.  From the exercise physiology computations, these values are given in terms of volumetric 
flowrates at standard conditions defined as a pressure of 101.3 kPa, a temperature of 273.2 K, and no moisture in the 
air.  The oxygen consumption and carbon dioxide production values in Table 3-22 are converted from volumetric 
flowrates at standard temperature and pressure to mass flowrates using the ideal gas law.  The comparison between 
the metabolic rate in Table 3-21 and the rate in Table 3-22 is not a perfect comparison.  One is taken from an empirical 
equation and one is based on an evaluation of a team of experts.  Assuming the experts have the correct value, the 
empirical value differs by 8%.
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Table 3-22 Crew Induced Metabolic Loads61 

Crew 
Member 
Activity 
Description 

 

Duration of 
Activity (hr) 

Sensible (dry) 
Heat Output 
(kJ/hr) 

Wet Heat 
Output (includes 
latent and sweat 
run-off) (kJ/hr) 

Total Heat 
Output 
Rate (kJ/hr) 

Water Vapor 
Output 

(kg/min*10-4) 

Sweat Runoff 
Rate (kg/min 

*10-4) 

O2 
Consumption 
(kg/min * 10-4 

CO2 Output 
(kg/min*10-4) 

Sleep 
 8 224 92 317 6.30 0.00 3.60 4.55 

Nominal 
14.5 329 171 500 11.77 0.00 5.68 7.20 

Exercise 0-15 
min at 75% 
VO2max 

0.25 514 692 1206 46.16 1.56 39.40 49.85 

Exercise 15-
30 min at 
75% VO2 
max 

0.25 624 2351 2974 128.42 33.52 39.40 49.85 

Recovery 0-
15 min post 
75% VO2max 

0.25 568 1437 2005 83.83 15.16 5.68 7.02 

Recovery 15-
30 min post 
75% VO2max 

0.25 488 589 1078 40.29 0.36 5.68 7.02 

Recovery 30-
45 min post 
75% VO2max 

0.25 466 399 865 27.44 0.00 5.68 7.02 

Recovery 45-
60 min post 
75% VO2max 

0.25 455 296 751 20.40 0.00 5.68 7.02 

 
Total Per Day 24 hr 7351 kJ 4649 kJ 12000 kJ 1.85 kg 0.08 kg 0.82 kg 1.04 kg 

                                                           
61 HIDH (2014) 
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3.3.2.2 LONG DURATION MISSION METABOLIC LOADS 

In order to estimate metabolic loads for longer duration exploration missions (>TBD days), alternate 
exercise protocols were evaluated at NASA/JSC as prescribed by exercise physiologists.  These protocols were 
analyzed using the 41-Node Metabolic Man computer program after VO2 and VCO2 measurements were made on 
a variety of test subjects following these protocols.  These simulations were run with mostly the same assumptions 
as those listed in the HIDH.  The assumptions and boundary conditions are as follows: 

 
82-kg crewmember 
1.75 m crewmember height 
VO2max = 45 mL/kg/min at STPD 
5% work efficiency of the exercise device 
Air and wall temperature = 294.3 K 
Airflow = 9.1 m/min  
Dew point = 283.2 K 
Spacecraft pressure = 101 kPa  
Microgravity loading 
Respiratory quotient = 0.92 (applied volumetrically) 
Crewmember wearing shorts and T-shirt 
 

The reference crewmember in these simulations is larger than the 50th percentile male, but is 
representative of the astronaut population.  The VO2 data taken during the sessions allowed for computation of the 
metabolic rate.  The VO2 and VCO2 data used to determine the metabolic rates was reported in Standard 
Temperature and Pressure Dry (STPD), that calculation was performed using Weir (1949), per equation 3-4 as 
given below. The metabolic rate was calculated for the average exercise scenario and did not try to capture the 
work and rest intervals exactly.   

 
𝐌𝐌𝐌𝐌 = 𝟑𝟑.𝟗𝟗𝟑𝟑𝟗𝟗 × 𝐕𝐕𝐕𝐕𝟐𝟐 + 𝟗𝟗.𝟗𝟗𝟎𝟎𝟔𝟔 × 𝐕𝐕𝐂𝐂𝐕𝐕𝟐𝟐 Equation 3-4 

Where: 
MR    = Metabolic rate (Kcal/min) 
VO2   = Oxygen consumed (liters/minute) 
VCO2 = Carbon Dioxide produced (liters/minute) 

 
A summary of the different activity periods is given in   
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Table 3-23. Some additional cases that investigate interval exercise profiles are documented in 
Pantermuehl and Miranda, 2015.   These protocols are being considered by NASA for Orion, and may reduce the 
moisture load on the ECLSS.  The protocol to be used for long-term spaceflight are still being evaluated and may 
include this concept.  The resistance exercise procedure is generally used as follow-on to an aerobic exercise and 
is not intended as an alternate exercise protocol. For a full day (24 hours) of activity, the crewmember activity 
would include aerobic exercise plus the resistance exercise activity and cool-down, 8 hours of sleep, and the 
balance would consist of the nominal activity. 
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Table 3-23  Comparison of Metabolic Rates for Reference Crewmember 

Description 

Total 
time 
(min) 

Work 
Interval 
(min) 

Rest 
Interval 
(min) 

Intensity of 
peak Heart 

rate 

Metabolic 
Rate 

(kJ/hr) 

O2 
Consumption 

g/min 

CO2 Output 
g/min 

Continuous 
Exercise  45 45 0 75% 3487 4.028 5.095 

Resistance 45    1251 1.445 1.828 
Nominal     500 0.568 0.720  
Sleep     317 0.360  0.455  
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Table 3-24 through Table 3-27 present the results of the exercise scenario for the reference crewmember 
as well as the 5th, 50th and 95th percentile crewmembers. The reference, 5th percentile and 50th percentile 
crewmembers were assumed to be medium fit individuals with a VO2max of 45 mL/kg/min as in the HIDH.  The 
95th percentile crewmember is assumed to be a high fit individual with a VO2max of 55 mL/kg/min. 

The convective and radiative surface areas were determined from the nomographic relationships in the 
41-Node man program based on the height and mass of the different percentile crewmembers.  The convective and 
radiative areas differ due to blockage of parts of the body to the radiative heat transfer exchange. 

These values are for a single crewmember with the constant cabin conditions as stated previously.  While 
it is expected that only one crewmember will exercise at a time, the cool-down period will still add latent and 
sensible heat to the cabin atmosphere.  This needs to be accounted for in the design of the ECLSS. 

To develop a daily profile from the exercise tables, the sensible and latent heat addition can be added to 
the vehicle ECLSS load for each crewmember.  The rest of the daily total will be a combination of sleep and 
nominal awake loads to sum up to a 24-hour day for each crewmember.  It is assumed that the vehicle ECLSS will 
control the atmosphere so there will not be any adverse effects for multiple crew.  Ideally only one person would 
be exercising at a time, but it could overlap with another crewmember’s cool-down period. 
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Table 3-24        Metabolic Output for Reference Crewmember 

 

Activity 
(Minutes) 

Metabolic 
rate 

(kJ/hr) 

Sensible 
heat 

(kJ/hr) 

Total 
Latent 
Heat 

(kJ/hr) 

Water 
Vapor 
Output 
(g/min) 

Sweat 
Output 
(g/min) 

O2 
Consumption 

(g/min) 

CO2 
Output 
(g/min) 

Exercise – 
Aerobic 0-15 3487 518.5 816.6 5.16 0.24 4.03 5.10 

Exercise – 
Aerobic 15-30 3487 629.9 1996.1 12.59 5.60 4.03 5.10 

Exercise – 
Aerobic 30-45 3487 720.1 2375.7 14.97 12.83 4.03 5.10 

Exercise – 
Resistance 0-15 1251 618.0 1649.4 10.40 5.16 1.45 1.83 

Exercise – 
Resistance 15-30 1251 519.4 1094.8 6.91 0.72 1.45 1.83 

Exercise – 
Resistance 30-45 1251 482.2 947.6 5.99 0.42 1.45 1.83 

Exercise - Finish 
Prep Recovery 0-

15 
500 327.3 629.1 3.98 0.20 0.58 0.73 

Recovery 15-30 500 319.2 437.3 2.76 0.02 0.58 0.73 

Recovery 30-45 500 313.8 353.5 2.23 0.00 0.58 0.73 
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Table 3-25        Metabolic Output for 5th Percentile Crewmember 

 

Activity 
(Minutes) 

Metabolic 
rate 

(kJ/hr) 

Sensible 
heat 

(kJ/hr) 

Total 
Latent 
Heat 

(kJ/hr) 

Water 
Vapor 
Output 
(g/min) 

Sweat 
Output 
(g/min) 

O2 
Consumption 

(g/min) 

CO2 
Output 
(g/min) 

Exercise – 
Aerobic 0-15 2126 407.8 512.8 3.24 0.08 2.46 3.11 

Exercise – 
Aerobic 15-30 2126 462.8 1235.3 7.80 1.36 2.46 3.11 

Exercise – 
Aerobic 30-45 2126 506.3 1432.2 9.03 2.75 2.46 3.11 

Exercise – 
Resistance 0-15 863 445.1 941.8 5.94 0.95 1.00 1.26 

Exercise – 
Resistance 15-30 863 400.1 635.6 4.01 0.13 1.00 1.26 

Exercise – 
Resistance 30-45 863 384.1 543.2 3.43 0.04 1.00 1.26 

Exercise - Finish 
Prep Recovery 0-

15 
345 265.0 354.2 2.24 0.02 0.40 0.50 

Recovery 15-30 345 258.6 232.4 1.47 0.00 0.40 0.50 

Recovery 30-45 345 254.1 181.8 1.15 0.00 0.40 0.50 
 

  



Life Support Baseline Values and Assumptions Document, NASA/TP-2015-218570, Rev1 January 2018 

 

52 

Table 3-26        Metabolic Output for 50th Percentile Crewmember 

 

Activity 
(Minutes) 

Metabolic 
rate 

(kJ/hr) 

Sensible 
heat 

(kJ/hr) 

Total 
Latent 
Heat 

(kJ/hr) 

Water 
Vapor 
Output 
(g/min) 

Sweat 
Output 
(g/min) 

O2 
Consumption 

(g/min) 

CO2 
Output 
(g/min) 

Exercise – 
Aerobic 0-15 3188 493.3 752.5 4.75 0.21 3.68 4.66 

Exercise – 
Aerobic 15-30 3188 594.4 1839.6 11.61 4.39 3.68 4.66 

Exercise – 
Aerobic 30-45 3188 671.9 2166.2 13.65 9.79 3.68 4.66 

Exercise – 
Resistance 0-15 1170 578.9 1486.2 9.37 3.78 1.35 1.71 

Exercise – 
Resistance 15-30 1170 491.8 991.6 6.26 0.56 1.35 1.71 

Exercise – 
Resistance 30-45 1170 462.0 859.0 5.43 0.31 1.35 1.71 

Exercise - Finish 
Prep Recovery 0-

15 
467 313.4 565.1 3.57 0.14 0.54 0.68 

Recovery 15-30 467 305.7 389.9 2.46 0.01 0.54 0.68 

Recovery 30-45 467 300.5 313.7 1.98 0.00 0.54 0.68 
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Table 3-27        Metabolic Output for 95th Percentile Crewmember 

 

Activity 
(Minutes) 

Metabolic 
rate 

(kJ/hr) 

Sensible 
heat 

(kJ/hr) 

Total 
Latent 
Heat 

(kJ/hr) 

Water 
Vapor 
Output 
(g/min) 

Sweat 
Output 
(g/min) 

O2 
Consumption 

(g/min) 

CO2 
Output 
(g/min) 

Exercise – 
Aerobic 0-15 5197 596.25 1146.71 7.25 0.57 6.00 7.59 

Exercise – 
Aerobic 15-30 5197 826.00 2875.60 18.12 23.82 6.00 7.59 

Exercise – 
Aerobic 30-45 5197 931.66 3338.61 21.02 55.00 6.00 7.59 

Exercise – 
Resistance 0-15 1452 764.33 2527.38 15.92 30.97 1.68 2.12 

Exercise – 
Resistance 15-30 1452 667.32 1645.25 10.38 3.51 1.68 2.12 

Exercise – 
Resistance 30-45 1452 557.77 1261.26 7.97 0.99 1.68 2.12 

Exercise - Finish 
Prep Recovery 0-

15 
580 362.75 842.22 5.32 0.54 0.67 0.85 

Recovery 15-30 580 350.78 604.23 3.82 0.10 0.67 0.85 

Recovery 30-45 580 342.45 490.89 3.10 0.02 0.67 0.85 
 
The same crew size cases were analyzed with the 41-Node man program to steady state conditions to 

yield results for the sleep and nominal metabolic rates. These steady state values could be used to determine the 
metabolic loads for variable times for individual crewmembers or to determine the time variant loads for multiple 
crewmembers. The steady state loads are presented in Table 3-28 and the daily totals are in Table 3-29.  The daily 
total assumes an 8-hour sleep period, the exercise as presented in the previous tables and the remainder of the day 
using nominal metabolic rates. 

Table 3-28        Steady State Metabolic Output for all Crewmembers 

 

Case 
Metabolic 

rate 
(kJ/hr) 

Sensible 
heat 

(kJ/hr) 

Total 
Latent 
Heat 

(kJ/hr) 

Water 
Vapor 
Output 
(g/min) 

Sweat 
Output 
(g/min) 

O2 
Consumption 

(g/min) 

CO2 
Output 
(g/min) 

5th Percentile Sleep 218 123 95 0.6006 0.00 0.2523 0.3191 
5th Percentile Awake 345 243 102 0.6428 0.00 0.3985 0.5041 

50th Percentile Sleep 296 152 144 0.9108 0.00 0.3424 0.4332 
50th Percentile Awake 467 293 175 1.1059 0.00 0.5399 0.6829 

95th Percentile Sleep 367 187 180 1.1391 0.00 0.4241 0.5365 
95th Percentile Awake 580 333 248 1.5665 0.00 0.6703 0.8479 

Reference CM - Sleep 317 160 157 0.9902 0.00 0.3656 0.4625 
Reference CM - Awake 500 306 194 1.2253 0.00 0.5777 0.7307 
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Table 3-29        Daily Total Metabolic Output for all Crewmembers 

 

Case Metabolic 
rate (kJ) 

Sensible 
heat (kJ) 

Total 
Latent 
Heat 
(kJ) 

Water 
Vapor 
Output 

(kg) 

Sweat 
Output 

(kg) 

O2 
Consumption 

(kg) 

CO2 
Output 

(kg) 

5th Percentile 8991 5187 3714 1.41 0.08 0.62 0.79 

50th Percentile 12418 6299 5975 2.26 0.29 0.86 1.09 
95th Percentile 16338 7423 8687 3.29 1.73 1.13 1.43 

Reference CM  13337 6608 6590 2.50 0.38 0.92 1.17 
 
The data from all of the previous tables in this section were determined from the 41-Node Man metabolic 

analysis program.  The nominal awake and sleep values were determined by running the program until steady-
state values were attained and applying the final values to the table.  The exercise and recovery values were 
determined by taking the average value of each of the parameters of the duration.  The total heat stored is not 
shown in the tables, but that would be the difference between the metabolic rate and the total heat rejected.  During 
exercise this value would be increasing and during recovery it would be decreasing. 

The 95th percentile case would be the most extreme design load for the vehicle ECLSS.  While it is 
unlikely that the entire crew would consist of 95th percentile crewmembers, this design case would allow for the 
most robust ECLSS.  In considering the vehicle architecture, the impact of the minimum load case should also be 
considered.  Since the values listed in this section all come from analysis, there is some uncertainty in the numbers.  
This uncertainty stems from both the assumptions in the model as well as individual variability between 
crewmembers.   

3.3.3 METABOLIC ANALYSIS PROGRAMS 
3.3.3.1 41-NODE MAN 

The 41-Node Man Program (METMAN) is a Fortran-based thermal model that simulates the human body with 
10 body compartments or “segments” representing the torso, arms, legs, hands, feet, and head of a person (see 
Figure: 3-2).  The model simulates heat transfer and heat generation within the body.  Heat generation comes 
from the basal metabolism, work, and shivering.  Heat transfer between segments occurs from conduction and 
blood flow.  Heat is transferred between the skin and the suit by conduction, sweating, convection, and radiation.  
Heat loss from the body also occurs due to respiration.   
 
METMAN results are coarse since it uses just 41 nodes to model the entire body.  Each segment is made up of 
four concentric cylinders (i.e. nodes) that loosely represent skin, fat, muscle, and “core”.  The cylindrical nodes 
are assumed to be axisymmetric.  The 41st node represents the central blood pool, which is in contact with the 
nodes in all body segments62.  
 
Use of the higher fidelity Wissler Human Thermal Model was first proposed to allow advanced spacesuit 
analysis outside of the crew comfort envelope.  METMAN results may be less accurate outside of this envelope. 

                                                           
62 Bue (1989) 
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Figure: 3-2   Metabolic Man Segments and the ASDA Outer Suit Layer (with PLSS) 

 

3.3.3.2 ASDA SUIT & PLSS 

The ASDA spacesuit was built around METMAN and is composed of three layers of 10 nodes, a backpack, and 
the Mars environment.  The cylindrical nodes are assumed to be axisymmetric in SINDA, although they may be 
more complex in the TSS radiation model.  The innermost layer is a pressure bladder.  The next layer is the inner 
suit.  This layer may be filled with a phase change material, depending upon user input.  The final layer is the 
outer suit.  It serves as a removable insulation layer, depending on the ambient conditions.  All layers may be 
permeable in varying degrees to water and carbon dioxide depending upon user input.  Note that the suit nodes 
are not numbered to correspond with the body segments (see Figure: 3-2).  A cross section of the suit along with 
the heat transfer paths is in Figure: 3-3. 
 
The ASDA Suit’s portable life support system (PLSS) is located in an integral backpack on the suit.  The PLSS 
contains the suit’s batteries, ventilation system, and liquid cooling system.  ASDA-METMAN also has a very 
detailed (and lightly documented) model of a PLSS radiator.   
 
A detailed model of the Mars environment is integrated into the ASDA-METMAN model.  Depending upon 
what options the user picks, the environment may be represented by constant temperature sinks or time varying 
temperature and heat flux curves.   
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Figure: 3-3   ASDA Suit Model Heat Transfer Paths 

 

3.3.3.3 WISSLER HUMAN THERMAL MODEL 

A very detailed human thermal model was developed and refined over the last 30 years by Dr. Eugene H. 
Wissler at the University of Texas at Austin.  His Fortran-based program uses a thermal difference network to 
simulate a human performing some transient work profile in user specified clothing and thermal environment63.   
 
The Wissler model body segments (also referred to as elements) are composed of 15 unequally spaced nodes 
arranged as cylindrical shells to model the viscera, bone, muscle, fat and skin of the human body (Figure: 3-4).  
Arterial and venous blood in each segment are represented by discrete nodes that are interconnected among the 
segments.  Up to 6 more nodes per segment are used to represent clothing and protective garments.  Sweat 
collection and evaporation in the clothing layers is modeled, as is active fluid cooling of the skin or clothing. 
 
Like METMAN, the segment’s cylindrical nodes are assumed to be axisymmetric.  Note that Wissler uses 
forearm and calf segments, not hand and foot segments like METMAN.  Thus, clothing including the LCG 
garment cover parts of the forearms and the calves.    
 
Physiological processes such as ventilation, metabolism, muscular work, perspiration, shivering, 
vasoconstriction, oxygen and carbon dioxide concentrations in tissues are modeled.  Thermoregulation of the 
body is controlled by feedback from the physiological processes and heat transfer with the local thermal 
environment.  The Wissler model has successfully predicted the body’s response to work in a variety of thermal 
environments from immersion in cold water to exercise in hot humid climates to flight at high altitude64.   
 
The experience at NASA/JSC has shown that the Wissler model can have issues converging to a solution during 
high metabolic rate/ high humidity environments.  Conversations with Dr. Wissler indicated that the higher 
fidelity 3-D model would yield better results.  This model does not have a suit or cooling garment so those 
aspects would need to be built into the model using either Thermal Desktop or some other solution code. 
 

                                                           
63 Wissler (1985) 
64 Wissler (1986) 
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Figure: 3-4.   Wissler Segments 

 

3.3.3.4 ASDA-WISSLER MODEL  

The ASDA-Wissler model (like ASDA-METMAN) runs two thermal models simultaneously.  The ASDA Suit 
model (in SINDA and Fortran) goes from the Mars environment to the outer suit and the PLSS to the inner suit.  
The Wissler model (in Fortran) goes from the LCG garment (and hood) to the skin and on into the body.  Both 
models meet at the pressure bladder and the LCG garment (and hood).   
 
Figure: 3-5 diagrams the interface between the two models.  Only a small portion of the nodes in either model 
are shown.  Nodes T(i,18) and T(i,19) are the next-to-outermost and outermost LCG garment nodes of the i-th 
segment.  Both models pass node temperatures back and forth.  Inside the Wissler model the pressure bladder 
temperature is treated as a constant temperature boundary.  On the other hand the ASDA Suit model treats the 
pressure bladder as an ordinary diffusion node, while the LCG garment temperature and the ventilation gas are 
treated as constant temperature boundaries (handled as applied fluxes in subroutine SUIT)65.  
 

                                                           
65 Durrant and Dobarco-Otero [2001] 
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Figure: 3-5   Interface Between the Wissler and ASDA Suit Models 
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3.3.4 CREWTIME ESTIMATES 
Crewtime is an important commodity on any human mission.  In fact, wise usage of the crew’s time is at 

the core of all exploration in which human beings take part.  Historically, crewtime for life support functions has 
been limited to monitoring equipment and replacing expendables or making repairs.  Support for the biomass 
production within a food subsystem, however, could easily consume a substantial fraction of the crew’s time. 

The information here is meant to outline the time available to a crewmember during a standard workweek.  
Langston (2005) outlines a generic schedule for crewtime on ISS.  This is assumed with slight modifications here 
as shown below in Table 3-30. 

Table 3-30   Time Allocation for a Nominal Crew Schedule in Weightless Environment-  Current ISS 66 

Activity 
Weekday 

[CM-h /CM-d] 
Weekend Day 
[CM-h/CM-d]   

Daily Planning Conferences 0.5 0.0  

Variably-
Scheduled 

Time 

Daily Plan Review 
/ Report Preparation 1.0 0.0  

Work Preparation 0.5 0.0  
Scheduled Assembly, Systems, 
and Utilization Operations 67 6.5 0.3  

Meals – prepackaged ready to eat 
system68 3.0 3.0  

Housekeeping, and Laundry 0.0 2.0  
Post Sleep 0.5 0.5  

Invariantly-
Scheduled 

Time 

Exercise, Hygiene, Setup / Stow 2.5 2.5  
Recreation 0.0 6.0  
Pre-Sleep 1.0 1.0  
Sleep 8.5 8.5  

Total 24.00 24.00   

Several of the categories in Table 3-30 deserve some additional explanation.  The category “scheduled 
assembly, systems, and utilization operations” includes, among other things, system and vehicle maintenance.  
Thus, life support system maintenance deducts crewtime from other mission objectives.  The category “meals” 
includes pre-meal preparation and post-meal cleanup in addition to actual meal consumption.  It is assumed here 
that the time for meals would not diminish on a vacation day.  “Housekeeping, including laundry” is assumed here 
to include laundry operations, if applicable, in addition to general vehicle cleaning operations.  For ISS this is 
scheduled as four hours per crewmember per week during the weekend, i.e., two hours per crewmember per 
weekend-day.  “Exercise, hygiene, setup / stow” is assumed to include pre- and post-exercise operations, such as 
post-exercise hygiene operations.  In short, exercise includes some overhead in addition to the actual time spent 
exercising.  “Sleep” denotes time for rest. 

The ISS schedule devotes up to 80 minutes total of “daily payload operations” per non-weekday to 
support experiments that demand tending daily (Langston, 2005).  This is included above in “scheduled assembly, 
                                                           
66 From Langston (2005) for International Space Station crews.  Note: Time estimates are given for a nominal week inside 

of ISS excluding variations for critical mission functions such as docking/undocking operations and/or extravehicular 
activities. 

67 This category includes payload operations.  Langston (2005) allots up to 80 minutes per day to support experiments 
that may require daily tending, although such usage of crewtime is discouraged.  Here, in round terms, this is represented 
as 0.3 hours per day per crewmember assuming the total time for daily payload operations will not increase and 
rounding to the nearest 0.1 hour. 

68 Langston (2005) allots a uniform 1.0 hour per meal for preparation, consumption, and cleanup. 
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systems, and utilization operations” during both weekdays and weekend days. 69  Assuming the overall magnitude 
of these daily payload operations will not increase, these operations for a crew of four (rounding to the nearest 
0.1h) would equate to 0.3 h/CM-d. 

Here, the last five categories in Table 3-30, post sleep, exercise, hygiene, setup stow, recreation, pre-
sleep, and sleep, are not available for life support operations under nominal scheduling scenarios.  For purposes 
here, they are classified as Invariantly-Scheduled Time (IST). 

Time other than IST, theoretically, might be available for either maintaining the life support system or 
for other activities if the life support system uses less time.  This time block is designated here as Variably-
Scheduled Time (VST).  VST includes not only time for mission objectives, but also time scheduled for life support 
operations, such as equipment maintenance, meal preparation, consumption, and cleanup, and laundry operations.  
Realistically, using the entire block of VST for life support functions is unacceptable, though the total VST places 
an upper limit on available time.  Further, any time not used for life support operations may be employed to 
accomplish mission objectives while not impacting the IST. 

As outlined in Langston (2005), ISS will operate on a standard week of seven 24-hour days.  The standard 
workweek, for planning purposes, is five weekdays followed by a two-day weekend.  Vacation is allotted as eight 
days per crewmember per year regardless of nationality. 

Assuming a workweek schedule as outlined in Table 3-30 and an ISS vacation schedule, a crewmember 
will have, on average, 67.2 CM-h/wk of VST and 100.8 CM-h/wk of IST in a weightless environment. 70  
Assuming the exercise time is 0.5 CM-h/d shorter due to working against gravity, a crewmember will have 
69.7 CM-h/wk of VST and 98.3 CM-h/wk of IST on a planetary surface.  Minimally, a crewmember might be 
expected to work at least 50 CM-h/wk, recalling that this VST includes maintaining the life support equipment 
and meal operations (Table 3-31).  The maximum available VST might be 10% greater than the average values 
but, based on Skylab experience, this rate can only be maintained for periods of 28 days or less. 

Table 3-31 Crewtime per Crewmember per Week 

Mission Phase 
Assumptions [CM-h/wk] 

References lower nominal upper 71 
Transit/Weightlessness 50 (1) 67.2 (2) 73.9 (1) (1) Estimated (see above) 

(2) Based on Langston (2005) 
Surface/Hypogravity 50 (1) 69.7 (1) 76.7 (1) 

To assess the cost associated with adding an operation that requires crew intervention, a crewtime mass 
penalty is computed by dividing the total per capita life support system mass by the VST crewtime.  This penalty 
may be applied to determine the ESM associated with crew operations.  Typical values might vary between 
0.1 kg/CM-h and 10 kg/CM-h. 

Two philosophies are commonly employed by researchers to determine a crewtime-mass-penalty 
(CTMP).  The first assumes that each hour of crewtime required by the life support systems is equally valuable.  

                                                           
69 During the weekday the daily payload operations are included within the allotment of 6.5 h/CM-d.  They only appear 

as a “separate item” on weekend days. 
70 The term "microgravity" is often used to designate the condition experienced in Earth orbit.  However, until one is 

relatively far away from the Earth, gravity is still present, and an older term, "weightlessness," is more accurate.  In 
low-Earth orbit, the force of gravity is still about 95% of what it is on the surface of the Earth, but objects falling freely 
– whether in orbit or falling towards the atmosphere or in any other trajectory not involving non-gravitational external 
forces, such as propulsion or atmospheric drag – do not feel any force.  "Weight" is the term used for the force felt when 
a human’s feet press against the Earth, and thus holds the individual back against the force of gravity.  In free fall, there 
is no such force, hence the term "weightless" is more accurate.  To get true microgravity – a millionth of that on the 
surface of the Earth – the Sun's gravity must be considered also.  At the distance of the Moon, this is about twice that 
of the Earth.  To encounter true microgravity, one would have to travel out to near the edge of the Solar System, about 
as far as the orbit of Uranus.  In many situations, the difference between microgravity and weightlessness does not 
matter.  However, it may affect the behavior of fluids, rotational movement, and large structures, and the use of tethers. 

71 The listed upper limit for crewtime per week is 10% above the average values discussed in the text.  Firm upper limits 
are not currently known, but they are likely to be no greater than these values, especially for operations lasting more 
than a week or two. 
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The second, as forwarded by Levri, et al. (2000), assumes that each additional hour of time required by the life 
support system is more valuable than the previous hour.  The first approach is consistent with the philosophy 
adopted to compute the other mass-equivalencies (See Section 3.2), while the second tends to more severely 
penalize a life support system architecture that makes large demands on crewtime.  The first approach is 
recommended for general use. 

The first approach used to determine CTMP assumes each hour of crewtime is equally valuable.  Once a 
value for crewtime is established, changes in crewtime have a linear effect on the overall equivalent mass of a life 
support system.  Table 3-32 provides CTMP values for several mission scenarios computed using Equation 3-6.  
Inputs for these values come from or are based on the Advanced Life Support Research and Technology 
Development Metric for Fiscal Year 2006 (Metric, 2006).  The lower and nominal values in Table 3-32 are derived 
from life support systems using advanced technologies, while the upper values reflect current technologies from 
historical programs such as the Space Transportation System, or Shuttle, or the International Space Station. 72 

Table 3-32 Crewtime-Mass Penalty Values Based Upon the Fiscal Year 2006 Advanced Life Support 
Research and Technology Development Metric 

 Assumptions [kg/CM-h]  
Mission Destination lower nominal upper Reference 
Low Earth Orbit    (1) Baseline Technologies 

 from Metric (2006) 

(2) Exploration 
Technologies from Metric 
(2006) 

  0.333 0.333 0.724 
Moon    

Crew Exploration Vehicle 3.640 (2) 5.050 (1)  
Lunar Surface Access Module 13.98 (2) 15.66 (1)  
Lunar Outpost 73 1.480 (2) 2.100 (1)  

Mars    
Mars Transit Vehicle 0.526 (2) 0.802 (1)  
Mars Descent / Ascent Lander 1.810 (2) 2.850 (1)  
Surface Habitat Lander 0.506 (2) 0.940 (1)  

The second approach to determine CTMP values assumes that each hour of crewtime required by the life 
support system is more valuable than the previous hour.  Thus, the CTMP is computed by dividing the life support 
system mass, excluding crewtime, by the total available crewtime that is not devoted to personal activities or to 
maintaining the life support system.  Equivalently, this latter denominator is VST minus time devoted to the life 
support system.  This value is effectively fixed once the total crewtime, crewtime devoted to the life support 
system, and the life support system mass are determined.  However, this value is a function of the crewtime 
required to service and maintains the life support system, so it will vary if its component values change. 

Assuming each hour of crewtime is more valuable than the previous hours of crewtime, Levri, et al. 
(2000) present a formulation for the second crewtime-value formulation.  They define the following terms: 

                                                           
72 Please note that the Advanced Life Support Research and Technology Development Metric for Fiscal Year 2006 may 

not be identical to the infrastructure values presented above in Section 3.2; the infrastructure values should, however, 
be comparable, so the values here may be used as approximate values. 

73 Metric (2006) calls the “Lunar Outpost” the “Destination Surface System.” 
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Symbol Units Physical Meaning 
ESMw/o ch [kg] Equivalent system mass (ESM) for the life support system 

without accounting for crewtime spent for life support.  Or, the 
“non-crewtime” portion of ESM. 

ESMLSS [kg] Component of life support ESM to support crewtime involved 
in life support.  Or, the “crewtime” portion of ESM. 

ESM Total [kg] Total life support system ESM; ESMw/o ch + ESMLSS. 
tLSS [CM-h/wk] Crewtime spent on the life support system.  This is identical to 

the portion of VST spent of life support. 
tMP [CM-h/wk] The total crewtime per week available for life support system 

maintenance or mission-related objectives.  This is equivalent 
to VST. 

tMP-LSS [CM-h/wk] Crewtime per week not devoted to the life support system or to 
personal activities; tMP - tLSS.  This is crewtime available for 
mission-related objectives such as science or exploration. 

Levri, et al. (2000) then assume that the overall ESM of the life support system, including the crewtime, 
is proportional to the total mission production time as the ESM of the life support system without crewtime is 
proportional to mission production time less the time for life support, or: 

MP

Total

t
ESM  = 

LSSMP

cho/w

t
ESM

−

 
Equation 3-4 

Alternatively, the overall ESM of the life support system is: 

ESM Total = ESM w/o ch 








−LSSMP

MP

t
t  

Equation 3-5 

Using this approach, as crewtime for life support increases, the crewtime per week not devoted to life 
support or to personal activities, tMP-LSS, decreases, and the overall ESM for the life support system increases in a 
non-linear manner.  In fact, as tMP-LSS approaches zero, the overall ESM for the life support system approaches 
infinity. 

Thus, here CTMP is derived by dividing the life support equivalent system mass excluding crewtime by 
the total available crewtime not devoted to personal activities or life support maintenance. 

CTMP = 
MP

cho/w

t
ESM  

Equation 3-6 

3.3.5 NOMINAL HUMAN INTERFACES 
Nominal balances of major life support commodities are summarized in Table 3-33, for a standard 82 kg 

crewmember with a respiratory quotient 74 of 0.92 during intravehicular activities.  The water loads include 
0.345 kg/CM-d of metabolically generated water.  Actual values depend on many factors, including physical 
workload, diet, and individual metabolism. 

                                                           
74 Respiratory quotient is defined as moles of carbon dioxide produced divided by moles of oxygen consumed. 
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Table 3-33 Summary of Nominal Human Metabolic Interface Values 

Balance 75 Interface Units 
Nominal 

Value References 
 Basis    

(1) Calculated from the 
NASA HIDH 
(2014), Metabolic 
rate is with exercise. 

(2) Perchonok (2008), 
10-day menu. 

(3)     Goodliff (2017) 
AIAA-5122 

  Overall Body Mass kg 82 
 Respiratory Quotient  0.9276 
 Air   

− m Carbon Dioxide Load kg/CM-d 1.04 (1) 
+ m Oxygen Consumed kg/CM-d 0.816 (1) 

 Food   

+ m Food Consumed; Mass (without 
packaging)  kg/CM-d 1.51 (1) 77 

+ E Food Consumed; Energy Content MJ/CM-d 12.59 (2) 
+ m Potable Water Consumed 78 kg/CM-d 2.5 (1) 

 Metabolic Water 79 kg/CM-d 0.4 
 Thermal   

− E Total Metabolic Heat Load 80 MJ/CM-d 12.00 (1) 

 Sensible Metabolic Heat Load MJ/CM-d 7.35 (1) 
 Latent Metabolic Heat Load 81 MJ/CM-d 4.65 (1) 

 Waste   
− m Fecal Solid Waste (dry basis) kg/CM-d 0.03 (3) 
− m Perspiration Solid Waste (dry basis) kg/CM-d 0.02 (3) 

− m Urine Solid Waste (dry basis) kg/CM-d 0.06 (3) 

 Water 82   
− m Fecal Water kg/CM-d 0.09 (3) 
− m Respiration and Perspiration Water 83 kg/CM-d 1.9 (3) 

− m Urine Water kg/CM-d 1.62 (3) 

− m Miscellaneous Water Losses kg/CM-d 0.02 (3)  

In addition to the gross metabolic balance, human beings also emit other compounds in trace 
concentrations, products of metabolic processes, as noted below in the appropriate sections.  Additionally, human 
beings also generate solid and water loads associated with personal hygiene.  These hygiene loads are more 
variable than metabolic loads and, thus, tend to be mission dependent.  Nominal hygiene loads are also summarized 
below.  Please refer to the tables listing design water and waste loads in section 4.2. 

                                                           
75 Masses consumed by the crewmember are denoted by “+ m,” while masses rejected by the crewmember are denoted 

by “- m.”  Likewise, energy entering the crewmember is denoted by “+ E,” while energy rejected by the crewmember 
is denoted by “- E.” 

76  This respiratory quotient is in reality dependent on diet. 
77 As shipped, before water addition. Contains approximately 0.7 kg/CM-d water   
78 This value includes drinking water and water used to hydrate food and drinks, Food is not generally dehydrated on ISS. 
79 Metabolic water is generated as the body oxidizes food. 
80 The total metabolic heat load is the summation of the sensible and latent metabolic heat loads. 
81 Assuming a latent heat for water of 2,420 kJ/kg. 
82 The difference between the water load sum of fecal water, respiration and perspiration water, and urine water, and the 

potable water consumed, as given above, is metabolic water.  Here, metabolic water is 0.345 kg/CM-d.  Also, the water 
values below are consistent with the dry basis waste values above. 

83 The respiration and perspiration water corresponds to the latent metabolic heat load above. 
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4  LIFE SUPPORT SUBSYSTEM ASSUMPTIONS AND VALUES 
The function Life Support consists of three subsystems: Air, Water, and Waste.  There are also a 

considerable number of subsystems that impact these Subsystems: Food, EVA, Habitation, Power, Radiation 
Protection, Thermal Control, Medical Care, In situ Resource Recovery, Control Systems, and Biomass Production.  
Organization of these topics in this document is based on the perception of criticality to life support from a time 
point of view, and if time criticality is judged equivalent, then overall impact to the life support system is 
considered.  For example, biomass production will be extremely important in years to come and there has been 
considerable work done in this area, but its use is not on the near horizon.  It was therefore put at the end of the 
section so the reader would not have to look through that large body of material each time the document is 
referenced.  The Food System has references to the Biomass Production System which comes later in the 
document, but it is also extremely important near term so it is placed relatively high on the list of interfaces with 
ELS subsystems. 

 AIR SUBSYSTEM 

4.1.1 DESIGN VALUES FOR ATMOSPHERIC SYSTEMS 
Air supply is the most time-critical of the life support functions.  Typical steady-state values are given in 

Table 4-1.  Total pressure could vary from 20.7 kPa (3 psia) to greater than 117.2 kPa (17 psia) with oxygen 
content from 17 kPa (2.48 psia) partial pressure to 34% by volume (NASA HIDH (2014)).  The Apollo Program 
used 34.5 kPa (5 psia) 100% oxygen and the Skylab Program used 5 psia and 70% oxygen.  However, in the 
interest of fire safety, experts at NASA feel that very high oxygen concentration is too risky for safe operation due 
to the threat of fire, and also pure oxygen is believed to cause some damage to the lungs if used for extended 
periods of time without interruption.   

One of NASA’s major goals is suited operations on the Lunar and Martian surfaces (see further discussion 
in section 4.6).  ISS EVA operations originate from 21% oxygen and 101.3 kPa (14.7 psia) of pressure, with a 
prebreathe period at 70.3 kPa (10.2 psia). Under this protocol, exploration EVA would be possible but it would be 
inefficient and challenging since frequent EVA is expected.  An extended prebreathe protocol would be necessary 
to gradually move the nitrogen from tissues, into the blood, and finally out of the crewmember’s lungs prior to 
embarking on EVA.  Without this protocol the crewmember would likely be at risk of decompression sickness, 
where nitrogen bubbles form in the tissue spaces causing pain and in extreme cases neurological damage or even 
death.  By stabilizing the crew in an atmosphere where pressure is closer to the eventual EVA suit pressure, the 
prebreathe protocol can be shortened and therefore is less risky and more efficient, allowing EVA goals to be 
reached.  At lower total pressure, the crewmember’s lungs still must see a similar oxygen partial pressure as seen 
at Earth sea- level conditions.  The percentage by volume of oxygen in the cabin atmosphere must therefore be 
higher than an Earth sea-level atmosphere.  This represents a compromise where there is somewhat more risk of 
fire in order to accomplish EVA exploration goals.  The fire risk is then mitigated further by limiting cabin 
construction materials for the specified percentage of oxygen.   

The most recent recommendation for atmospheres that will enable high frequency EVA phases of a 
mission is 57 kPa (8.2 psia) total pressure and 34% oxygen content (Norcross, 2013).  This is most likely to be 
required for pressurized rovers and surface habitats.  Vehicles without expected EVA (such as launch and transport 
vehicles) are still expected to operate with Earthlike atmospheres as the ISS does, and be pressurized at 101 kPa 
(14.7 psia) with 21% oxygen.  A habitat that operates at 57 kPa (8.2 psia) during high frequency EVA operations 
would also be required to operate at 101 kPa during other phases because the majority of flight data experience is 
at these higher pressures.  Landers and other vehicles with intermediate requirements and any vehicle that supports 
a contingency EVA capability would operate at 70.3 kPa (10.2 psia) and 26.5% oxygen (Norcross, 2013).  These 
design recommendations will result in a particular vehicle having different set points for operation during different 
phases of the mission.  A vehicle may also be driven to add a setpoint by an interface requirement with element 
operating at a different specific pressure.  Typically, the highest total pressure and highest oxygen concentration 
drive requirements for structural design and the materials used for components inside.  As a result, ECLSS 
hardware should be developed to operate at all three conditions to enable operations of a vehicle with multiple set 
points, and enable technology commonality across multiple vehicle elements. 

Carbon dioxide levels are another critical parameter when examining requirements for atmospheric 
conditions.  Humans are susceptible to hypercapnia in varying degrees based on elevated carbon dioxide levels in 
the atmosphere. Table 4-1 provides historical spacecraft maximum allowable concentrations (SMAC) for CO2; 
however, as noted in the footnote of Table 4.1, ISS has recently adopted a lower maximum value for CO2 of ≤0.53 
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kPa (4 mmHg) as per CHIT (a short official directive from Mission Control). Investigation of symptoms associated 
with elevated CO2 levels is ongoing (Law, 2014). 

A variety of symptoms occur from exposure to elevated CO2 (Table 4-2). At levels between 2.3-2.7 
mmHg CO2, fatigue and full-headedness will occur. At levels between 2.7-3 mmHg CO2, self-reports of 
performance decrements, missed procedure steps, and prolonged procedures have been recorded (Law/Alexander, 
2016). The actual onset of symptoms to CO2 concentration is highly variable and depend on the individual 
characteristics.  The effects of longer duration exposure to even 0.5% CO2 in microgravity is unknown but thought 
to be adverse (Law 2014). 

The ISS has developed flight rules pertaining to high CO2 concentration partly derived from SMAC’s, 
NIOSH guidelines and OSHA standards. These flight rules are listed below (Law, 2010). 

•If ppCO2 levels average higher than 5.3 mm Hg over 5 days or 6.0 mm Hg over 1 day, the flight surgeon 
must be consulted when planning crew activities. 

•If ppCO2 levels reach or exceed 7.6 mm Hg, measures must be taken to lower the ppCO2 to permissible 
levels per Flight Rule B17-5 (“CO2 Partial Pressure Limits and Actions”), which details specific actions to 
troubleshoot and scrub CO2. The same corrective actions are required if ppCO2 is 4.5 mm Hg or greater and CO2-
related symptoms not attributed to another cause are present. 

•Off-nominal situation: Immediate action to minimize adverse CO2 effects on the crew must be taken at 
CO2 levels of 10 to 15 mm Hg. The gas environment is scrubbed down to allowable CO2 levels. If signs of illness 
develop, the crew must use individual breathing devices (IBD). If the ppCO2 remains above 7.6 mm Hg or if the 
IBDs get expended, the crew must evacuate the affected area. Exposure to CO2 levels of 10 to 15 mm Hg are 
limited to 8 hours or less. 

•Emergency situation: Immediate action with the highest priority to prevent crew exposure must be taken 
at CO2 levels of 15 to 20 mm Hg. The crew is to use IBDs when performing repair operations, scrub down the gas 
environment, and evacuate the affected area if ppCO2 remains higher than 15 mm Hg or if IBDs become expended.  
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Table 4-1 Typical Steady-State Values for Vehicle Atmospheres 

  Assumptions 84  

Parameter Units lower Nominal Upper References 

Carbon Dioxide Generated kg/CM-d 0.622 85 (1) 1.037 86 (1) 7.178 87 (1) (1) calculated based 
upon lower and 
upper metabolic 
rates in NASA 
HIDH (2014). 
RQ, respiratory 
quotient is 
assumed to be 
0.92. 

(2) Human Integration 
Design 
Handbook/Rev1 
(2014) 

(3) Norcross (2013) 
(4) Earth normal 
(5) accepted 

optimum for plant 
growth 

(6) ALS RD (2003) 
(7) Boeing (2002) 
(8) computed from 

NASA (1998) 
and 
Boeing (1994), 
but most space 
vehicles  

 (9) NASA Std. 3001, 
Vol 2 Rev A, 
(2015) 

 (10) Typical ISS 
 (11)  Law (2010) 

Oxygen Consumed kg/CM-d 0.518  (1) 0.818 (1) 5.67 (1) 

p[O2] for Crew; nominal no 
impairment 10 

kPa 20.7 (9) 21. 2 (2) 50.6(9) 

p[O2] for Crew;  measurable 
impairment until acclimatized 
10 

kPa 17.2 (2) 18.6 (2) 18.6 (2) 

p[O2] for Crew; allowable for 
1 hour10 

kPa 15.2 (2)  17.2 (2) 

p[CO2] for Plants  kPa 0.04 (4) 0.13 (5) 3.4(12) 

p[CO2] for Crew kPa 0.267 (11) 0.507 (11) 88 1.01 (11) 

Total Cabin Pressure kPa 48.0 (6) 89 101 or 70.3 
or 56.5 (3) 

102.7 (6) 

Temperature K 291 (9) 296 (6) 300 (9) 

Relative Humidity % 25 (9) 40 (10) 75 (9) 

Perspired Water Vapor kg/CM-d 0.036 (7) 0.699 (7) 1.973 (7) 

Respired Water Vapor kg/CM-d 0.803 (7) 0.885 (7) 0.975 (7) 

Maximum Design Leakage 
Rate (space flight) 

%/d 0 0.05 (8) 0.14 (8) 

 

                                                           
84 The values here are averages for nominal operation of the life support system.  Degraded or emergency life support 

system values may differ. 
85 During sleep 
86 Nominal respiration 
87 Seventy-five percent VO2 max 
88  May be reduced to 0.267 kPa nominal 24-hour average in future NASA-STD-3001 document updates 
89 An almost pure oxygen atmosphere, such as was utilized for early spacecraft (Mercury, Gemini, and Apollo), has a total 

pressure of 34.5 kPa.  Skylab used an atmosphere at 34.4 kPa (258 millimeters of mercury), but the crews reported 
numerous discomforting effects. 
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Table 4-2 Symptoms of Carbon Dioxide Toxicity 
Signs/Symptoms at increasing levels 

Fatigue 
Headaches 
Hyperventilation 
Difficulty concentrating 
Irritability 
Performance decrements 
Hearing and vision affected 

In addition to the carbon dioxide load noted above in Table 4-1, human beings also emit volatile 
compounds, products of metabolic processes, on a per crewmember per day basis and cabin equipment on a per 
mass of equipment per day basis, as noted in Table 4-3 (Perry, 2009). Spacecraft maximum allowable 
concentration (SMAC) values are established by NASA for many compounds. The load model contains all of the 
primary life support system design driving compounds. These include NH3, CH4, CO, dichloromethane, methanol, 
2-propanone, and several low molecular weight alcohols. Good functional class representation is provided with 
the most prevalent compounds reported from in-flight cabin air quality sample analyses included in the listing.  

This load model is recommended for future design basis for trace contamination control effort.  This 
replaces the 58 compound load model used previously (Perry, 1998).  The new load model decreases the NH3 
production rate by 86% from the previous value of 350.0 mg/person-d based on greater number of literature 
sources.  

 
  

(Law/Alexander, 2016) 
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Table 4-3  Model for Trace Contaminant Generation 90 

CONTAMINANT SMAC*  
(mg/m3) 

RATE 
EQUIPMENT  

(mg/kg-d) 
METABOLIC 
(mg/person-d) 

Methanol 90 1.3 × 10-3 0.9 
Ethanol 2,000 7.8 × 10-3 4.3 
n-butanol 40 4.7 × 10-3 0.5 
Methanal 0.12 4.4 × 10-6 0.4 
Ethanal 4 1.1 × 10-4 0.6 
Benzene 0.2 2.5 × 10-5 2.2 
Methylbenzene 15 2 × 10-3 0.6 
Dimethylbenzenes 37 3.7 × 10-3 0.2 
Furan 0.07 1.8 x 10-6 0.3 
Dichloromethane 10  2.2 × 10-3 0.09 
2-propanone 52 3.6 × 10-3 19 
Trimethylsilanol 4 1.7 × 10-4 0 
Hexamethylcyclotrisiloxane 9 1.7 × 10-4 0 
Ammonia 2  8.5 × 10-5 50 
Carbon monoxide 17  2 × 10-3 18 
Hydrogen 340 5.9 × 10-6 42 
Methane 3,500 6.4 × 10-4 329 

*180-day SMAC, JSC 20584 (2008). 
 

  

4.1.2 GAS STORAGE 
Gas storage is necessary for any life support system.  Gas can be stored in pressure vessels, as a cryogenic fluid, 
adsorbed, or chemically combined.  The “costs” of storage depends on the gas, with the “permanent” gases, such 
as nitrogen and oxygen, requiring higher pressure and remaining in the gaseous state at normal temperatures, 
while the “non-permanent” gases, such as carbon dioxide, can be stored as liquids under pressure.  Cryogenic 
storage requires either continuous thermal control or use of a small quantity of the gas to provide cooling by 
evaporation.  Adsorption and chemical combination are very gas-specific, and vary in performance.  See  
Table 4-4 for known gas storage tank masses. 
 

Table 4-4 Gas Storage 

 Performance [kg of tankage/kg of gas]  
Type of Storage Nitrogen Oxygen References 
Pressure Vessel 0.556 – 1.70 (1) 0.364 (2) (1)Personal communication with 

S. Lafuse  in 2001 
(2)Hamilton Sundstrand (1970) Cryogenic Storage 0.524 (2) (2) 

 
 

4.1.3 PLANETARY DUST 
Apollo astronauts learned first-hand how problems with dust impact Lunar surface missions.  After 

three days, lunar dust contamination on EVA suit bearings led to such great difficulty in movement that another 
EVA would not have been possible.  Dust clinging to EVA suits was transported into the Lunar Module.  During 
the return trip to Earth, when micro gravity was reestablished, the dust became airborne and floated through the 

                                                           
90 From Perry (2009). 
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cabin.  Crews inhaled the dust and it irritated their eyes.  Some mechanical systems aboard the spacecraft were 
damaged due to dust contamination. (Wagner, 2006) 
As NASA embarks on future exploration missions, the effects of these extraterrestrial dusts must be well 
understood and systems must be designed to operate reliably and protect the crew in the dusty environments of 
the Moon, Mars and Asteroids. 
 

4.1.3.1 REGOLITH 

 
Regolith is defined as the layer of loose material covering the bedrock of the earth and moon, etc., 

comprising soil, sand, rock fragments, volcanic ash, glacial drift, etc.  Because the Moon does not have an 
atmosphere and running water, erosion forces that weather the Earth do not exist.  Asteroids and meteors strike 
the lunar surface creating craters and large rocks.   High energy particles and micro-meteors continuously 
bombard the Moon further breaking these rocks into very fine dust. 
 When lunar samples were brought to Earth during the Apollo missions scientists in the receiving 
laboratory sorted and catalogued rocks greater than 1 centimeter.  The sub-centimeter portion was further broken 
down into “coarse fines” (1cm-1mm) and “fine-fines” (sub-millimeter) and although the definition was sub-
centimeter, in practice, it is the sub-millimeter fine-fines are called soil.   The portion of the soil less than 50 
micrometers was informally called dust.   

“Roughly 10% to 20% of the lunar soil is finer than 20 μm, and a thin layer of dust adheres 
electrostatically to everything that comes in contact with the soil: spacesuits, tools, equipment, and lenses. The 
shapes of individual lunar soil particles are highly variable, ranging from spherical to extremely angular. In 
general, the particles are somewhat elongated and are subangular to angular. Because of the elongation, the 
particles tend to pack together with a preferred orientation of the long axes” (Heiken, 1991). As particle size 
decreases, adhesive, cohesive, and excitatory forces become very strong.  This is important from an engineering 
perspective because the smaller particles will tightly adhere to surfaces they contact and tend to stick together. 

On Mars, the unconsolidated material is a mix of windblown sand and dust and fragments of underlying 
bedrock. The sand is predominantly basalt, whose composition has been only minimally altered chemically by 
interactions with atmospheric gases and water. In contrast, the dust is brighter and very red, and consists of 
basaltic rocks that have been broken into small particles and oxidized by exposure to the atmosphere and 
possibly water. Martian dust is sticky and tends to adhere to exposed surfaces.  
(http://crism.jhuapl.edu/science/geology/geology.php) 

“The Viking Lander 1 site has two types of fine grained sediment deposits: drifty and blocky material.  
The drift material, which has the ‘consistency of loose kitchen flour’ (Arvidson et al. 1989a) covers about 14% 
of the Viking Lander 1 site.  Blocky material, having the apparent consistency of ‘dry cloddy garden soil,’ was 
also present in the rocky area in front of the Lander where it was usually overlain by drift material.”   
(http://www.uapress.arizona.edu/onlinebks/ResourcesNearEarthSpace/resources24.pdf) 

Study results obtained by robotic Martian missions indicate that Martian surface soil is oxidative and 
reactive.  Exposure to the reactive Martian dust may pose a concern to crew health and the integrity of 
mechanical systems. 

Describing Martian dust, Morris (2006) wrote, “Bright Martian dust can therefore be described as an 
assemblage of particles in the clay plus fine silt size range (<5 um) that contain primary igneous minerals 
(olivine, pyroxene, feldspar, and magnetite) and sulfate-bearing alteration/weathering products (npOx but not 
phyllosilicate minerals). Discrete dust particles are predominately composites of these phases rather than 
predominantly monophase [e.g., Madsen et al., 1999; Goetz et al., 2005]. The strongly magnetic mineral in the 
dust (and Laguna Class soil in general) is magnetite [Morris et al., 2004, 2006; Goetz et al., 2005].” This paper 
included the table (shown below) which provides chemical composition of Martian dust.   

Readers can find more information about Martian dust in (Tomasko 1999). 
 
 
 
 
 
 
 
 

http://crism.jhuapl.edu/science/geology/geology.php
http://www.uapress.arizona.edu/onlinebks/ResourcesNearEarthSpace/resources24.pdf
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Table 4-5  Elemental Data for Martian Dust, Panda Subclass Soil, and MoessBerry Subclass Soil  

 
 

4.1.3.2 PLANETARY DUST SYSTEM IMPACTS 

A NASA team of multi-disciplined engineers and scientists was tasked to identify systems that will be 
affected by dust and how they will be affected (Wagner 2008). The tables that follow resulted from that study. 

Table 4-6  Air Revitalization System Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 

Ventilation System Mechanical components of vents, fans, intakes, louvers, may be 
compromised.  Certain failures in these systems have the potential to 
become active dust spreaders rather than dust eliminators.  

Trace Contaminant Control  Impaired system would decrease the capacity to scrub contaminants 

CO2 removal Desiccant and sorbent beds may become fouled with dust, reducing 
performance. 

CO2 reduction Catalytic beds may become fouled with dust, reducing performance. 

O2 generation May become fouled with dust, reducing performance 

CO2 compressor May become fouled with dust, reducing performance 

Particulate Control System Possible system overload and/or drastic increase in mass due to high 
use of expendables 

 

Table 4-7 Water Recovery System Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 



Life Support Baseline Values and Assumptions Document, NASA/TP-2015-218570, Rev1 January 2018 

 

71 

Biological Water Processor Bacterial organisms may be poisoned by chemicals in dust 
Water Quality Monitor Clogging or blocking of chemically reactive sites or physical 

pathways of instrument resulting in performance degradation. 
 

Table 4-8 Solid Waste Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 

Waste Collectors If salts and metals from the dust are present biological processes may 
not be able to remove said materials from the system and if trying to 
use recycled materials contaminated with dust constituents, time 
dependent buildup to unacceptable levels could occur.  Effects crops 
and water 

Waste Compactor Compactor tubes may be scratched, scored, damaged. 
Particle Size Reducer Dulled cutting blades 

Waste Disposal Filters and other components will be frequently replaced placing a 
burden on waste disposal processes and storage 

 

Table 4-9 Thermal Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 

Radiators Deposits on the radiator surface may degrade performance. 

humidity control Clogging of pitot tubes, small orifices in rotary separators, and 
porous media used to separate condensate from the air stream. 
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Table 4-10  Other Life Support Systems Effects of Dust Exposure 

 

Table 4-11  Airlock Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 

QDs/Connectors Seal degradation, leaks, higher spares/maintenance 

Hatch Seals Seal degradation, leaks, higher gas makeup, spares/maintenance, 
dust transfers into habitat/vehicle 

 

Table 4-12  Space Suit Assembly Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 

Outer Garment Dust accumulation/transfer to airlock-habitat; degradation of 
materials 

bearings Seal degradation, leaks, higher spares/maintenance 

visor coatings Scratches/severe abrasion; loss of coatings 

lighting Reduced illumination due to dust coating illumination source 

 
  

Subsystem/Component Effect due to Dust Exposure 

Crop Growth If dust is used in the root substrates, when it dries, circulating air 
around the plants may stir up dust.  Chemicals in dust may 
poison plant organisms. 

Crop Harvesting Harvesting of dry crops may produce organic dust. 

Valves Compromise sealing surfaces, corroding or scoring turning shafts 

Pumps Plugging, eroding bearings, moving parts 
Membranes Chemical attack, fouling, puncturing, plugging 

Filters Plugging 

Seals Plugging or compromising sealing surfaces 

Heat Exchangers Internal clogging, covering of external heat exchanging surfaces. 
Flow Tubes Clogged, scratched, scored, damaged. 
Fluid Connectors Sliding seals can get scratched and lead to leakage. 
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Table 4-13  Portable Life Support System (PLSS) Power and Communications Effects of Dust 
Exposure 

Subsystem/Component Effect due to Dust Exposure 

Electrical Circuits Charged dust particles could result in static shock to electronics 

Battery/Fuel cell Dust in battery contacts cause power drain and potential short 
circuit 

 

Table 4-14 PLSS Cooling Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 

Evaporative Membrane Contamination of membrane surface; transport blockage 

QD's and Connectors Seal degradation, leaks, higher spares/maintenance 

Radiator Surface Thermal coating degradation/loss of cooling efficiency 

 

Table 4-15  PLSS O2 Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 

QD's/connectors Seal degradation, leaks, higher spares/maintenance 

Regulators Contamination of orifices; transport blockage 

 

Table 4-16  PLSS Vent Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 

QDs/connectors Seal degradation, leaks, higher spares/maintenance 

Venting Membranes Contamination of membrane surface; transport blockage 
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Table 4-17 Ancillary Equipment Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 

Power Tools Dust in battery contacts cause power drain & potential short 
circuit 

Wrenches Buildup and restriction of working parts 

Sockets Buildup and restriction of working parts 

Drills Buildup and restriction of working parts 

Joints on Translation Aids Buildup and restriction of working parts 

Structures Buildup and restriction of working parts.  Corrosive 
constituents in dust may lead to degradation of structures if 
water used in EVA operations contacts dust on surfaces. 

Tools/Hardware Buildup and restriction of working parts 

 

Table 4-18 Advance Food Systems Effects of Dust Exposure 

Subsystem/Component Effect due to Dust Exposure 

Food Storage System Contamination 

Processing Equipment  Contamination 
Food preparation equipment Contamination 

 
4.1.3.3   REGOLITH CONTAMINATION MANAGEMENT - LAYERED ENGINEERING DEFENSE STRATEGY 

 
"A common sense, layered, engineering design defense can solve any 

apparent problem with dust during long-term human activity and habitation 
in the lunar environment." 

 
Harrison H. Schmitt 
Ames Research Center 
Lunar Dust Symposium 
February 2, 2004 

 
Space Systems Engineers design their individual components and systems for reliability, as they should.  

And, for cross-cutting challenges, such as regolith contamination, an integrated systems strategy needs to be 
considered. Such a strategy is described in (Wagner 2014). An integrated systems approach incorporates 
contamination prevention, exterior cleaning and protection, interior cleaning and protection, and maintaining air 
quality.  It depends mostly on sound operations and engineering design though some technology investments 
will be required. 

The first two layers of defense are materials and engineering design.  Materials, when possible, should 
consist of smooth, dust and abrasion resistant surfaces.  Pockets, folds, and other points on space suits that could 
trap dust should be minimized and designed so they do not collect dust.  Specialized surfaces that reject dust, 
either because of inherent surface properties or through active means, should be considered in original design 
where appropriate. 
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Engineering design should incorporate dust covers for sensitive equipment and employ grates on floors 
to collect dust.  Best practices for cleanable design should be followed and include minimizing gaps where dust 
and dirt can collect, designing rounded corners, and including human factors experts throughout the design 
process to assess crew access.  

Operational design is another key component for particulate management.  Suit and contaminated 
equipment ingress to habitable volumes should be eliminated, where practical. Where feasible, automated 
operations, such as continuously active or automated cleaning systems, will reduce the amount of crew-time 
required for managing regolith particulate contamination. “Asteroid, Lunar and Planetary Regolith Management: 
A Layered Engineering Defense” NASA/TP-2014-217399 identifies the technology capabilities needed to 
implement the layered engineering defense strategy.  It includes example technologies that would allow NASA 
to reach each capability and it identifies the missions that each of these technologies support. 

 

 WATER SUBSYSTEM 

Water will not be the most time-critical life support commodity, but water regeneration streams are the 
most massive of the life support subsystems.  Further, water quality is of great concern with respect to crew health.  
A complimentary regimen of technologies must be employed, which address contaminant removal issues 
mechanically and chemically.  In the past, power use has driven water regeneration.  However, other infrastructure 
“costs” are also important. 

4.2.1 DESIGN VALUES FOR WATER SUBSYSTEMS 
Clean water is required for drinks, food preparation, personal hygiene, and possibly for cleaning clothes 

and equipment.  Water quality standards will vary, but they might include potable, and hygiene, and water purified 
to technical grade.  The tables here provide anticipated usage rates for several scenarios.  The values are averages 
during nominal operation of the life support system.  Degraded or emergency life support system values may be 
different.  Table 4-19 lists steady-state water usage estimates for missions of 30 days or less.  Table 4-20 lists 
steady-state water usage estimates for longer duration missions.  More importantly here, Table 4-21 details 
anticipated wastewater generation rates to be processed by the Water Subsystem for long-duration missions.  
Please note that the water usage rates and wastewater generation rates sometimes differ, as a quick comparison of 
Table 4-20 to Table 4-21 confirms.  In some cases either the water usage or wastewater generation rates are 
unknown.  In other cases water usage does not correspond to wastewater generated and sent to the Water 
Subsystem, depending upon the configuration of the system using the water. 

The mission scenarios are defined as: (1) Devon Island (described below, for comparison), (2) Assembly 
complete International Space Station, assumed as lacking a hygiene water facility (i.e. sink), (3) A transit mission, 
currently assumed to have similar hygiene capabilities as ISS, (4) Early Planetary Base, assumed to have the 
capability for limited hygiene water use, and (5) Mature Planetary Base, assumed to have the capability for full 
hygiene water use as well as a biomass production chamber for food cultivation. For more information on the ISS 
state-of-the-art water recover system, see (Carter et al. 2013). 
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Table 4-19 Steady-State Values for Vehicle Water Usage for Short Duration Missions  

  Assumptions  
Parameter Units lower nominal upper Notes: 

Crew Water Allocation, 
assuming Minimal Hygiene Water 
for a Mission Less Than 30 days 

kg/CM-d  2.7 (1)  

(1) Based on Orion 
(2) This ‘steady-state’ value 

does not include additional 
per mission water 
requirements of 0.5 L/CM 
for eyewash, 1 L/CM for 
pre-landing fluid loading 
or 0.5 L/CM for post-
landing. 

 

The Haughton-Mars Project (HMP) is an international interdisciplinary field research project.  The project is 
centered on Devon Island, in the High Arctic which is viewed as a terrestrial analog for Mars.  The rocky polar 
desert setting, geologic features, and biological attributes of the site offer unique insights into the possible 
evolution of Mars; in particular, the history of water and of past climates on Mars, the effects of impacts on Earth 
and on other planets, and the possibilities and limits of life in extreme environments.  In parallel with its science 
program, the HMP supports an exploration program aimed at developing new technologies, strategies, human 
factors experience, and field-based operational know-how key to planning the future exploration of the Moon, 
Mars and other planets by robots and humans.  The concept of simulating some aspects of a Martian mission: 
EVA, Long Range Pressurized Rover, medical telemedicine and communication, studying immune system 
changes, plant growth using artificial light, and water-formed geologic features, all suggest that possibly Mars had 
a similar geologic past to the Devon Island environment. 

The section in Table 4-20 which contains the water use numbers for the Devon Island Mars analog study 
is valuable in that it demonstrates actual water use values that are reasonably close to the projected figures from 
other studies that they serve as a terrestrial analog comparison for other modeling and analysis projections on water 
use, (Bamsey, et al., 2009). 

http://www.arctic-mars.org/about/devon.html
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Table 4-20 Typical Steady-State Water Usage Rates for Various Missions 91 

Parameter Units 

Devon Island 
Mars Research 
Station Study 

International 
Space Station 

Transit 
Vehicle 

Early 
Planetary 

Base 
Mature 

Planetary Base References 

Drinking Water kg/CM-
d 2.59 2.00 (2) 2.00 (2) 2.00 (2) 2.00 (2) 

(1) NASA (2004) 

(2) NASA HIDH 
(2014) Values 
assumed for all 
future missions. 
Additional water 
is specified for 
pre-landing and 
post-landing (see 
NASA HIDH) 

.(3) Architecture 
dependent. 

Food 
Rehydration 
Water 

kg/CM-
d 1.03 0.50 (2) 0.50 (2) 0.50 (2) 0.50 (2) 

Total Human 
Consumption 

kg/CM-
d 3.62 2.50 2.50 2.50 2.50 

Urinal Flush kg/CM-
d 0 0.30 (1) 0.30 (1) 0.50 (2) 0.50 (2) 

Personal 
Hygiene 

kg/CM-
d 0.46 (4) 0.4 (2) 0.4 (2) 0.4 (2) 0.4 (2) 

(4) oral hygiene  

Hand Wash kg/CM-
d 0.64 n/a n/a   

(5) Jeng & Ewert 
(2015) 

(6) Assume Devon 
Island value 

Shaving kg/CM-
d 0.05     

 

Cleaning 
Science & 
Engineering 

kg/CM-
d 0.08     

 

Shower 92 kg/CM-
d 1.08 n/a n/a 1.08 (6) 1.08 (6)  

Laundry kg/CM-
d 1.95 n/a n/a n/a 1.8 (5)  

Dish Wash kg/CM-
d 3.54 n/a n/a n/a 3.54 (6)  

Total Hygiene kg/CM-
d 7.80 0.7 0.7 1.98 7.32  

Payload kg/CM-
d  2.18 (1) TBD (3) TBD (3) TBD (3)  

Total Payload 
Consumption 

kg/CM-
d  2.18     

Total Water 
Consumption 

kg/CM-
d 11.42 5.38 3.2 4.48 9.82  

Biomass 
Production Water 
Consumption 93 

kg/m²•d 0.10 94 n/a n/a n/a 4.00 
 

Medical water   5 kg plus 0.5 
kg/CM-d (2) 

5 kg plus 
0.5 

kg/CM-d (2) 

5 kg plus 
0.5 

kg/CM-d (2) 

5 kg plus 0.5 
kg/CM-d (2) 

 

                                                           
91 Note that additional water may enter the system through moist food and metabolically generated water. Actual usage 

has been substantially less. 
92 Assuming Devon Island value. 
93 The water quality may differ from the standards for crew use for water provided to plants as nutrient solution.  In fact, 

plants might provide some water reclamation functions even while providing raw agricultural products. 
94 The Devon Island study uses units of kg/CM-d for biomass water consumption. 
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Table 4-21 Typical Steady-State Wastewater Generation Rates for Various Missions 

Parameter Units 
International 
Space Station 

Transit 
Vehicle 

Early 
Planetary 

Base 

Mature 
Planetary 

Base References 
Urine kg/CM-d 1.20 (1) 1.50 (2) 1.50 (2) 1.50 (2) (1) NASA 

(2004) 
(2) NASA 

(1991) 
(3) Architecture 

dependent 
(4) Ewert & 

Jeng (2015) 

Urinal Flush kg/CM-d 0.30 (1) 0.30 (1) 0.50 (2) 0.50 (2) 

Total Urine Wastewater Load kg/CM-d 1.50 1.80 2.00 2.00 

Oral Hygiene kg/CM-d n/a n/a 0.37 (2) 0.37 (2)  
Hand Wash kg/CM-d n/a n/a 4.08 (2) 4.08 (2)  
Shower 95 kg/CM-d n/a n/a 2.72 (2) 2.72 (2)  
Laundry kg/CM-d n/a n/a n/a 1.8 (4)  
Dish Wash kg/CM-d n/a n/a n/a 5.41 (2)  
Food Preparation and 
Processing kg/CM-d n/a n/a n/a TBD  

Total Hygiene Wastewater Load kg/CM-d 0.00 0.00 7.17 24.45+  
Crew Latent Humidity 
Condensate kg/CM-d 2.27 (2) 2.27 (2) 2.27 (2) 2.90 (2)  

Animal Latent Humidity 
Condensate kg/CM-d n/a n/a TBD TBD  

Total Latent Wastewater Load kg/CM-d 2.27 2.27 2.27+ 2.90+  
Payload kg/CM-d n/a n/a TBD (3) TBD (3)  

Total Payload Wastewater Load kg/CM-d 0.00 0.00 0.00+ 0.00+  
       Total Wastewater Load kg/CM-d 3.77 4.07 11.44+ 29.35+  

Biomass Production 
Wastewater 96 kg/m²•d n/a n/a n/a TBD  

 

4.2.2 WASTEWATER COMPONENT CONTAMINANT LOADING 
Studies by Carter (1998) and Putnam (1971) provide the data for Table 4-22 through Table 4-27 which 

presents wastewater stream, aqueous contaminant loadings.  Work by Carter (1998) focuses on anticipated 
wastewater streams from ISS systems to aid sizing the ISS water processor.  Thus, some contaminants, especially 
those associated with ISS cleansing agents in the originally-planned shower (Table 4-24) and hygiene (Table 4-25) 
streams may be unique to ISS.  Likewise, wastes listed for the extravehicular mobility unit (Table 4-22) are specific 
to equipment employed by the Shuttle and ISS programs.  However, such loadings are likely representative.  Work 
by Putnam (1971) characterized only human urine.  The corresponding values given by Carter (1998) for urine 
reflect the urine processor product stream, as passed to the other ISS water processing equipment, and not an 
untreated urine stream. 

Table 4-22 through Table 4-27 have a similar formats.  The first column of each table provides the 
contaminant name.  When the common name differs from IUPAC nomenclature, the IUPAC name appears in 
brackets.  The next two columns, when checked with an “×,” identify those compounds in the wastewater stream 
that are defined as either controlled inorganic compounds (CI) for potable water streams or have an associated 
SMAC for the cabin atmosphere. 97  The molecular weight (MW) and percent carbon are listed next.  The loading 
density provides the concentration in milligrams of contaminant per liter of wastewater stream.  Finally, the last 
column provides the percentage of the specific contaminant with respect to the total contaminant loading. 

                                                           
95 Assuming one shower per two days. ISS does not have a shower despite early space station plans for that capability. 
96 The water quality may differ from the standards for crew use for water provided to plants as nutrient solution.  In fact, 

plants might provide some water reclamation functions even while providing raw agricultural products. 
97 See ELS RD (2008) for CI and SMAC requirements. 
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Each table is organized in order of descending concentration, or loading density.  Those components in 
aggregate comprising less than five percent of the total contaminant loading, or trace components, are listed below 
the thick line near the bottom of each table.  Trace components that are CI or have a SMAC are listed individually 
while all other trace components are listed under the generic heading of “constituents totaling less than 5%.” 

Table 4-22 details the anticipated aqueous contaminants in the greywater stream from an extravehicular 
mobility unit.  This stream reflects Shuttle or International Space Station program technology so a similar stream 
for an advanced spacesuit may differ.  Carter (1998) developed this list based on the International Space Station 
program. 

Table 4-22 Wastewater Contaminants in Extravehicular Mobility Unit Stream 

Component 
C 
I 

S 
M 
A 
C MW 

Percent 
Carbon 
[%C] 

Concentration 
[mg/L] 

Percent of 
Total 

Contam-
inants 
[%] 

acetone [2-propanone]  × 58.1 62.0 0.0256 34.4 
caprolactam   113.2 63.7 0.0227 30.6 
Freon 113 [1,1,2-trichloro-1,2,2-trifluoroethane] × × 187.4 12.8 0.0108 14.5 
ethylene glycol [1,2-ethandiol]  × 62.1 38.7 0.0035 4.7 
tetraoxadodecane [2,5,8,11-tetraoxadodecane]   178.2 53.9 0.0035 4.7 
tetradecanol [1-tetradecanol]   214.4 78.4 0.0029 3.9 
sulfolane [tetrahydrothiophene-1,1-dioxide]   120.2 40.0 0.0020 2.7 
constituents totaling less than 5%     0.0029 3.9 
benzene  × 78.1 92.3 0.0002 0.3 
toluene  × 92.1 91.2 0.0002 0.3 
Total     0.0742 100 

Table 4-23 lists the anticipated contaminants from the latent condensate derived from the crew cabin.  
Carter (1998) developed this list based on the International Space Station program. 
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Table 4-23 Wastewater Contaminants in Crew Latent Condensate 

Component 
C 
I 

S 
M 
A 
C MW 

Percent 
Carbon 
[%C] 

Concentration 
[mg/L] 

Percent of 
Total 

Contam-
inants 
[%] 

2-propanol  × 60.1 60.0 46.297 18.6 
1,2 propanediol   76.1 47.4 45.234 18.2 
bicarbonate   61.0 19.7 33.170 13.3 
acetic acid [ethanoic acid]  × 60.1 40.0 14.614 5.9 
ammonium ×  18.0 0.0 13.527 5.4 
caprolactam   113.2 63.7 11.834 4.8 
ethylene glycol [1,2-ethandiol]  × 62.1 38.7 10.224 4.1 
glycolic acid [hydroxy acetic acid]   76.1 31.6 10.194 4.1 
ethanol  × 46.1 52.1 8.181 3.3 
formaldehyde [methanal]  × 30.0 40.0 8.136 3.3 
formic acid [methanoic acid]   46.0 26.1 7.239 2.9 
propanoic acid   74.1 48.6 3.916 1.6 
methanol  × 32.0 37.5 3.737 1.5 
lactic acid [2-hydroxy-propanoic acid]   90.1 40.0 3.079 1.2 
4-ethyl morpholine   115.2 62.6 2.516 1.0 
urea   60.1 20.0 2.415 1.0 
chloride ×  35.5 0.0 1.465 0.6 
4-hydroxy-4-methyl-2-pentanone   116.2 62.0 1.247 0.5 
2-butoxyethoxy-ethanol   162.2 59.2 1.130 0.5 
4-acetyl morpholine   129.2 55.8 1.092 0.4 
1-butanol  × 74.1 64.8 0.937 0.4 
2-butoxyethanol   118.2 61.0 0.803 0.3 
carbon disulfide × × 76.1 15.8 0.785 0.3 
octanoic acid   144.2 66.6 0.665 0.3 
zinc ×  65.4 0.0 0.650 0.3 
N,N-dimethylformamide [N,N-dimethyl formic acid amide]   73.1 49.3 0.608 0.2 
total protein   3,206.3 53.0 0.600 0.2 
hexanoic acid   116.2 62.0 0.582 0.2 
isocitric acid [1-hydroxy-1,2,3-propanetricarboxylic acid]   192.1 37.5 0.576 0.2 
dibutyl amine   129.2 74.3 0.566 0.2 
potassium ×  39.1 0.0 0.542 0.2 
constituents totaling less than 5%     9.546 3.8 
nitrite ×  46.0 0.0 0.517 0.2 
2-ethoxyethanol  × 90.1 53.3 0.504 0.2 
acetone [2-propanone]  × 58.1 62.0 0.348 0.1 
magnesium ×  24.3 0.0 0.282 0.1 
phenol  × 94.1 76.6 0.204 0.1 
silver ×  107.9 0.0 0.200 0.1 
acetaldehyde [ethanal]  × 44.1 54.5 0.098 0.0 
cyclohexanone  × 98.1 73.4 0.089 0.0 
nickel ×  58.7 0.0 0.087 0.0 
acetophenone  × 120.2 80.0 0.083 0.0 
calcium ×  40.1 0.0 0.060 0.0 
sulfate ×  96.1 0.0 0.052 0.0 
methylene chloride [dichloromethane] × × 84.9 14.1 0.050 0.0 
manganese ×  54.9 0.0 0.035 0.0 
methyl ethyl ketone [2-butanone]  × 72.1 66.6 0.023 0.0 
iron ×  55.9 0.0 0.008 0.0 
tetrachloroethene × × 165.8 14.5 0.005 0.0 
copper ×  63.6 0.0 0.004 0.0 
isobutyl methyl ketone [4-methyl-2-pentanone]  × 100.2 72.0 0.002 0.0 
cadmium ×  112.4 0.0 0.001 0.0 
lead ×  207.2 0.0 0.001 0.0 
toluene  × 92.1 91.2 0.001 0.0 
ethyl benzene  × 106.2 90.5 trace 0.0 
benzene  × 78.1 92.3 trace 0.0 
chloroform [trichloromethane] × × 119.4 10.1 trace 0.0 
Total     248.76 100 
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Table 4-24 details the contaminants from a potential crew shower stream.  Depending on the actual 
cleansing agent employed, actual components in a shower greywater stream may vary.  Carter (1998) developed 
this list based on early space station plans.  Verostko, et al. (1989) and Wydeven and Golub (1990) also provide 
crew shower greywater models.  Sodium coconut acid-n-methyl taurate is the major surfactant component of the 
cleanser originally planned for Space Station.  If a different cleansing agent is used, this component would be 
replaced with the major components of the new cleanser. 

Table 4-24 Wastewater Contaminants in Crew Shower Stream 

Component 
C 
I 

S 
M 
A 
C MW 

Percent 
Carbon 
[%C] 

Concentration 
[mg/L] 

Percent of 
Total 

Contam-
inants 
[%]] 

sodium coconut acid-n-methyl taurate   341.0 58.0 449.96 47.6 
chloride ×  35.5 0.0 106.54 11.3 
sodium   23.0 0.0 106.10 11.2 
bicarbonate   61.0 19.7 39.10 4.1 
total protein   3,206.3 53.0 36.77 3.9 
urea   60.1 20.0 36.15 3.8 
acetic acid [ethanoic acid]  × 60.1 40.0 30.11 3.2 
propanoic acid   74.1 48.6 30.00 3.2 
lactic acid [2-hydroxy-propanoic acid]   90.1 40.0 24.16 2.6 
potassium ×  39.1 0.0 17.50 1.9 
ammonium ×  18.0 0.0 16.80 1.8 
sulfate ×  96.1 0.0 12.33 1.3 
constituents totaling less than 5%     32.39 3.4 
ethanol  × 46.1 52.1 3.08 0.3 
ethylene glycol [1,2-ethandiol]  × 62.1 38.7 2.51 0.3 
methanol  × 32.0 37.5 0.90 0.1 
phenol  × 94.1 76.6 0.37 0.0 
acetone [2-propanone]  × 58.1 62.0 0.21 0.0 
formaldehyde [methanal]  × 30.0 40.0 0.10 0.0 
propionaldehyde [propanal]  × 58.1 62.0 0.09 0.0 
Total     945.2 100 

Table 4-25 details the contaminants from a crew hygiene stream derived from hand and oral cleansing 
operations.  Depending on the actual cleansing agent employed, actual components in a hygiene greywater stream 
may vary.  Carter (1998) developed this list based on early space station plans.  Wydeven and Golub (1990) also 
provides a crew hygiene greywater model.  As in Table 4-24, Table 4-25 assumes the use of a cleanser based on 
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sodium coconut acid-n-methyl taurate.  If a different cleansing agent is used, this component would be replaced 
with the major components of the new cleanser. 

Table 4-25 Wastewater Contaminants in Crew Hygiene Stream 

Component 
C 
I 

S 
M 
A 
C MW 

Percent 
Carbon 
[%C] 

Concentration 
[mg/L] 

Percent of 
Total 

Contam-
inants 
[%] 

sodium coconut acid-n-methyl taurate   341.0 58.0 638.85 62.8 
sodium   23.0 0.0 85.00 8.3 
chloride ×  35.5 0.0 76.12 7.5 
lactic acid [2-hydroxy-propanoic acid]   90.1 40.0 34.34 3.4 
acetic acid [ethanoic acid]  × 60.1 40.0 28.59 2.8 
total protein   3,206.3 53.0 25.04 2.5 
bicarbonate   61.0 19.7 24.44 2.4 
sulfate ×  96.1 0.0 11.09 1.1 
formic acid [methanoic acid]   46.0 26.1 11.05 1.1 
potassium ×  39.1 0.0 10.78 1.1 
propanoic acid   74.1 48.6 9.56 0.9 
ethanol  × 46.1 52.1 8.57 0.8 
phosphate   95.0 0.0 7.20 0.7 
constituents totaling less than 5%     32.09 3.2 
methanol  × 32.0 37.5 6.36 0.6 
ammonium ×  18.0 0.0 5.81 0.6 
ethylene glycol [1,2-ethandiol]  × 62.1 38.7 1.58 0.2 
1-propanol  × 60.1 60.0 0.58 0.1 
2-propanol  × 60.1 60.0 0.26 0.0 
phenol  × 94.1 76.6 0.16 0.0 
dimethyl disulfide ×  94.2 25.5 0.13 0.0 
acetone [2-propanone]  × 58.1 62.0 0.09 0.0 
pentane  × 72.2 83.2 0.09 0.0 
formaldehyde [methanal]  × 30.0 40.0 0.07 0.0 
propionaldehyde [propanal]  × 58.1 62.0 0.05 0.0 
1-butanol  × 74.1 64.8 0.05 0.0 
dimethyl sulfide × × 62.1 38.7 0.05 0.0 
carbon disulfide × × 76.1 15.8 0.02 0.0 
Total     1,018.0 100 
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Table 4-26 lists the composition of unprocessed urine as derived from the human metabolic process.  The 
reference is Putnam (1971). For more recent information on calcium in urine issues during spaceflight, see Smith 
(2012) and Smith (2014). 

Table 4-26 Wastewater Contaminants in Crew Urine Stream 

Component 
C 
I 

S 
M 
A 
C MW 

Percent 
Carbon 
[%C] 

Concentration 
[mg/L] 

Percent of 
Total 

Contam-
inants 
[%] 

urea   60.1 20.0 13,400 36.2 
sodium chloride ×  58.4 0.0 8,001 21.6 
potassium sulfate ×  174.3 0.0 2,632 7.1 
potassium chloride ×  74.6 0.0 1,641 4.4 
creatinine   113.1 42.5 1,504 4.1 
ammonium hippurate ×  196.2 55.1 1,250 3.4 
magnesium sulfate ×  120.4 0.0 783 2.1 
ammonium nitrate ×  80.0 0.0 756 2.0 
ammonium glucuronate ×  211.2 34.1 663 1.8 
potassium bicarbonate ×  100.1 12.0 661 1.8 
ammonium urate ×  185.1 32.4 518 1.4 
ammonium lactate ×  107.1 33.6 394 1.1 
uropepsin (as tyrosine)   181.2 59.7 381 1.0 
creatine   131.1 36.6 373 1.0 
glycine   75.1 32.0 315 0.9 
phenol  × 94.1 76.6 292 0.8 
ammonium L-glutamate ×  164.2 36.3 246 0.7 
potassium phosphate ×  212.3 0.0 234 0.6 
histidine   155.2 46.4 233 0.6 
androsterone   290.4 78.6 174 0.5 
1-methylhistidine   169.2 49.7 173 0.5 
glucose   180.2 40.0 156 0.4 
imidazole   68.1 52.9 143 0.4 
magnesium carbonate ×  84.3 14.2 143 0.4 
taurine [2-aminoethanesulfonic acid]   125.1 19.2 138 0.4 
constituents totaling less than 5%     1,487 4.0 
ammonium aspartate ×  150.1 32.0 135 0.4 
ammonium formate ×  63.1 19.0 88 0.2 
calcium phosphate ×  310.2 0.0 62 0.2 
ammonium pyruvate ×  105.1 34.3 44 0.1 
ammonium oxalate ×  124.1 19.4 37 0.1 
Total     37,057 100 
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Table 4-27 lists the anticipated contaminants from the latent condensate derived from experimental 
animals.  Carter (1998) developed this list based on the International Space Station program. 

Table 4-27 Wastewater Contaminants in Animal Latent Condensate 

Component 
C 
I 

S 
M 
A 
C MW 

Percent 
Carbon 
[%C] 

Concentration 
[mg/L] 

Percent of 
Total 

Contam-
inants 
[%] 

ammonium ×  18.0 0.0 581.88 81.9 
acetic acid [ethanoic acid]  × 60.1 40.0 33.58 4.7 
2-propanol  × 60.1 60.0 14.76 2.1 
acetone [2-propanone]  × 58.1 62.0 14.69 2.1 
phosphate   95.0 0.0 12.09 1.7 
glycerol [1,2,3-propanetriol]   92.1 39.1 11.23 1.6 
total protein   3,206.3 53.0 8.81 1.2 
constituents totaling less than 5%     16.36 2.3 
potassium ×  39.1 0.0 5.07 0.7 
ethylene glycol [1,2-ethandiol]  × 62.1 38.7 4.18 0.6 
sulfate ×  96.1 0.0 1.47 0.2 
methanol  × 32.0 37.5 1.25 0.2 
nitrate ×  62.0 0.0 0.87 0.1 
chloride ×  35.5 0.0 0.74 0.1 
calcium ×  40.1 0.0 0.74 0.1 
2-butanol  × 74.1 64.8 0.60 0.1 
magnesium ×  24.3 0.0 0.56 0.1 
barium ×  137.3 0.0 0.53 0.1 
zinc ×  65.4 0.0 0.41 0.1 
acetaldehyde [ethanal]  × 44.1 54.5 0.33 0.0 
formaldehyde [methanal]  × 30.0 40.0 0.12 0.0 
nickel ×  58.7 0.0 0.08 0.0 
copper ×  63.6 0.0 0.07 0.0 
phenol  × 94.1 76.6 0.04 0.0 
arsenic ×  74.9 0.0 0.03 0.0 
iron ×  55.9 0.0 0.02 0.0 
silver ×  107.9 0.0 0.01 0.0 
manganese ×  54.9 0.0 0.01 0.0 
Total     710.55 100 

4.2.3 WASTEWATER AND INTERMEDIATE WATER SYSTEM SOLUTION FORMULATIONS 
FOR TESTING 

Formulations for standardized wastewater solutions for developmental hardware are presented in (Verostko and 
Carrier, 2006).  Verostko (2009) defined formulations of wastewater streams in spacecraft closed loop life 
support systems.  The document includes procedures to prepare ersatz wastewaters of urine, humidity 
condensate, and hygiene.  The urine ersatz consists of 21 organic compounds and 7 inorganic salts. The 
document summarizes minimum, average, and maximum physiological values of major urinary constituents. The 
humidity condensate ersatz consists of 26 ingredients for a total organic concentration, TOC, of 453 mg/L and 5 
inorganic compounds with a total concentration of 131 mg/L. Approximately 90% of TOC is attributed to ten 
organic compounds with concentrations greater than 10 mg-TOC/L. The major inorganic constituent in humidity 
condensate is ammonium bicarbonate at a concentration of 125 mg/L. 

 

 WASTE SUBSYSTEM 

The Waste Subsystem collects waste materials from life support subsystems and interfaces.  Commonly, 
wastes are perceived as materials that have no further utility.  However, because of the need for increased material 
loop closure for exploration missions, “wastes” encompass a variety of materials with varying degrees of possible 
future utility.  Wastes might include crew metabolic wastes, food packaging, wasted food, paper, tape, soiled 
clothing, brines, inedible biomass, expended hygiene supplies, and equipment replacement parts from the other 
subsystems.  The traditional definition of a waste within this document excludes most gases, depending on the 
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system configuration.  For example, crew-expelled carbon dioxide might not be recycled within a given life support 
system architecture.  In such a case, although carbon dioxide is technically a waste material, the Air Subsystem 
typically assumes the responsibility for waste gases.  However, the Waste Subsystem might ultimately collect the 
expended carbon dioxide scrubbing materials and trapped gases if those gases are not vented.  Subsystem 
definitions can be somewhat blurry.  For example, a waste-processing device might incorporate off-gassing 
contaminant control hardware, which is usually an Air Subsystem function, to control the release of potentially 
harmful gases.  When the waste system incorporates it, it is referred to as Source Contamination Control (SCC).  
When the function is provided by the Air Subsystem, it is referred to as Trace Contamination Control (TCC). 
Further information related to waste types and characteristics are included below. 

Wastes sent to the Waste Subsystem may be handled in many ways.  Wastes accepted by the Waste 
Subsystem may be collected, immediately prepared for short-term or long-term storage, processed to recover 
resources, processed to render them safe for disposal, and/or disposed of, depending on the mission-specific 
requirements and constraints.  The mission requirements and constraints consider cost, safety, planetary protection 
if applicable, integration with other subsystems, resource recovery, and any other pertinent issues defined for a 
specific vehicle or habitat.  

Current NASA spacecraft waste-handling approaches rely on venting and/or storage.  On Shuttle 
missions, most waste was stored and returned to Earth with little or no processing.  Consequently, the volume of 
wastes was significant.  Fecal waste on the Shuttle was processed by drying fecal material via exposure to the 
vacuum of space as a form of SCC.  Wet trash was similarly vented to space vacuum with special bags and 
compartments as a form of SCC.  Urine and excess fuel cell water was vented to space vacuum on Shuttle missions 
to avoid the breakdown of urea to ammonia and to reduce reentry mass.  On ISS wastes can be returned to Earth 
either previously aboard the Shuttle (in the Orbiter mid-deck or, within a multi-purpose logistics module in the 
payload bay), or currently with a commercial cargo vehicle (such as the Space X Dragon).    However, the majority 
of ISS wastes are removed using a disposable vehicle that is intentionally incinerated during re-entry (Russian 
Progress, HTV, ATV, and commercial cargo vehicles).   

Future long-duration mission wastes may be disposed directly like past missions.  However, they are 
more likely to be processed (Pisharody, et al., 2002; Broyan, et al., 2014) with the goals of reducing microbial 
growth and its accompanying odors, reducing its stored volume, processed to recover oxygen or water, or partly 
processed and stored.  For example, during transit to Mars, jettisoning trash might be acceptable, though waste 
might be more useful if retained for radiation shielding.  Jettisoning waste on the Martian surface may be 
constrained by planetary protection protocols for exploration missions.  Waste processing options will depend 
upon the mission scenario and cost/benefit ratio.   

 

4.3.1 HISTORICAL DATA ON SKYLAB 
Within the Gemini and Apollo programs, wastes were either returned to Earth in the vehicle, or dumped, 

most notably on the lunar surface.  On Skylab, the Saturn S-IVB 98 oxygen tank was used as a waste storage tank. 
The tank was vented to space through non-propulsive vents.  Wastes were placed in the tank through an airlock 
and off-gassed to space.  This eliminated the possibility of contamination of the interior crew areas, but likely 
contaminated the Skylab’s exterior surfaces. 

4.3.2 HISTORICAL WASTE LOADS FROM SPACE TRANSPORTATION SYSTEM MISSIONS 
On Shuttle missions, waste was contained and stowed for return to Earth in either “dry” trash bags, or in 

the volume F “wet” trash. 99  Waste stream characterization and water content studies were performed for each of 
six Shuttle missions: STS-29, STS-30, STS-35, STS-51D, STS-99, and STS-101.  The waste analyses for STS-29 
through STS-51D were conducted to improve solid waste management for the Shuttle program (Peterson 2004).  
The waste analyses for STS-99 and STS-101 provided data to develop a waste model to support planning for future 
waste handling within the Life Support Project.  Some data on waste composition has also been provided from 
STS 122 and STS-123. 

In 1985, wastes for STS-51D were analyzed at NASA Ames Research Center to determine the chemical 
composition of wastes and characterize the trash (Wydeven and Golub, 1991).  This study found that for 49.2 kg 
of total waste, 27.8 kg was food-related trash.  Approximately 22 %, or 10.8 kg, of the trash recovered was 
                                                           
98 The Skylab space station was fabricated from a modified Saturn S-IVB rocket stage. 
99 Shuttle stores trash generated within the vehicle itself in plastic bags or liners that are housed within designated storage 

areas on the middeck.  Volume F is one such trash storage cabinet. 
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comprised of food-related plastic packaging materials.  Another 12.2 kg of other plastics and paper brought the 
total for packaging materials within the trash to almost 47 %.  This data is presented in Table 4-28 and summarized 
in Table 4-29 and is equivalent to 49 CM-d. 

Table 4-28 Waste Analysis for STS-51D Trash 

Trash Item 
Mass 
[kg] 

Moisture 
Content 

[%] 

Fraction of 
Total Mass 

[%] Reference 
Food and Food Packaging    Wydeven and Golub 

(1991) 
Plate Waste 4.8 70 9.8 
Plastic Food Containers 10.8 0.2 22.0 
Uneaten Food and Beverages 100 12.2 0.2 24.7 

Biomedical 6.4  13.0 
Aluminum and Tape    

Grey Duct Tape 1.6  3.3 
Aluminum Cans 1.2 2 2.4 

Plastic and Paper    
Paper (mixed) 6.4 10.2 13.0 
Plastic Bags 3.2 0.2 6.5 
Miscellaneous Plastic 2.6 0.2 5.3 

Total 49.2  100.0 

Storage of wastes on-orbit during early Shuttle missions of 30 CM-d or less posed no challenge for the 
allotted resources of the Orbiter vehicle.  However, as Shuttle missions lengthened for Extended Duration Orbiter 
of 112 CM-d or more, the volume allocated was inadequate for the safe stowage of trash.  Research to determine 
future waste stowage requirements for Shuttle missions was initiated in 1989 by the Personal Hygiene and 
Housekeeping Laboratory at Johnson Space Center.  The study objectives were to determine the mass and volume 
of waste generated per crewmember per day, and the amount of liquid stored in trash per crewmember per day 
(Grounds, 1990).  Trash from Shuttle missions STS-29 (Garcia, 1989), STS-30 (Garcia, 1989), and STS-35 
(Grounds, 1990) were analyzed.  STS-35 differed from the two previous missions because STS-35 used pouches, 
and not boxes, for beverages and carried a prototype trash compactor (Grounds, 1990).  Thus, there is a marked 
decrease in the volume of trash from STS-35 compared with the previous missions, probably in large part due to 
the change in drink packaging.  This reduction in volume was consistent with data collected for STS-99 and 
STS-101 (Maxwell, 2000a and 2000b).  The data from these missions is summarized in Table 4-29. 

Not included in the trash data for Shuttle missions are dirty laundry or life support expendables, such as 
filters, that return to Earth separately from the trash.  STS-101 generated ~50 kg of dirty laundry, consisting of 
clothing and towels, occupying ~0.5 m³ (Maxwell, 2000b).  Laundry was returned to Earth in mesh laundry bags.  
Storage, stabilization, and odor control for laundry, some of it wet, will require dedicated facilities on longer 
duration missions if no change is made to the current storage process.  No data was available on life support system 
expendables for STS-101. 

Table 4-29 summarizes waste stream analyses completed for STS-99 and STS-101, as well as historical 
data from STS-29, STS-30, STS-51D, STS-122, and STS-123. 

The data from STS-122 and STS-123 was tabulated and recorded by an email by J. Villarreal in 2008. 

                                                           
100 This value corresponds to food and drink food packages that were never opened. 



Life Support Baseline Values and Assumptions Document, NASA/TP-2015-218570, Rev1 January 2018 

 

87 

Solid Waste Management for the International Space Station Mission 
While limited containment and stowage planning is acceptable for Shuttle, ISS, with its 90-day resupply 

requires additional planning and controls.  

Table 4-29 Space Transportation System Crew Provision Wastes from Past Missions 

   Trash (Solids)  Water  

Mission 
Duration 
[CM-d] 

 

[kg 
/CM-d] 

[m3 
/CM-d] 

 

[kg 
/CM-d] 

Percent of 
Total Trash 
(by mass) 

[%] Reference: 
STS-29 (1) 25  1.49 0.0139  0.345 27.35 (1) Garcia (1989) 

(2) Grounds (1990) 
(3) Wydeven and Golub 

(1991) 
(4) Maxwell (2000a) 
(5) Maxwell (2000b) 
(6) e-mail by J. Villarreal 

in 2008 

STS-30 (1) 20  1.63 0.0133  0.417 35.35 
STS-35 (2) 63  1.14 0.0067  0.218 26.80 
STS-51D (3) 49  1.01   0.096 9.61 
STS-99 (4) 66  1.47 0.0029  0.290 19.75 
STS-101 (5) 63  1.62 0.0041  0.439 27.09 
STS-122 (6) 91  1.16 0.0120  0.211 15.3101 
STS-123 (6) 49  1.57 0.0125  0.231 13.3102 

Average 54  1.39 0.0093  0.281 21.82 
 
ISS solid waste management today is similar to that for Mir.  Wastes are contained either in metal 

containers for human wastes, or plastic bags for crew provision and housekeeping wastes.  Filled containers are 
returned to Earth either by Progress, ATV, HTV, or Cygnus which incinerate upon re-entry.  ISS added a urine 
processor to its wastewater processing system in 2009, which led to additional water recovery but also urine brine 
as a waste product. This brine is currently disposed of together with its container. 

Calculated overall waste generation rates, according to the life support subsystem and interface 
categories, using data from ISS human missions, are shown in Table 4-30, for reference missions associated with 
International Space Station, and in Table 4-33, for reference missions associated with near-term exploration 
missions to Mars using the Mars Dual Lander Architecture.  RMD (2008) details the assumed reference missions.  
Some data here is inferred, such as air filters.  These tables present generation of storable or disposable wastes 
based on the assumed configurations.  A common list of hardware is used for all vehicles.  In cases where particular 
hardware is not part of the configuration for a specific reference mission, the location within the table is marked 
with an “.”  When hardware is present, but a storable or disposable waste is not produced, a “”appears.  When 
hardware is present and a storable or disposable waste is produced, a rate, in terms of mass per crewmember per 
day, is listed.  These tables list only wastes delivered from the hardware or elements for disposal or storage listed, 
including any containers.  Thus, wastes should not be counted more than once. 

The technology suite for segments or vehicles in Table 4-30 and Table 4-33 are denoted by prefixes.  
Vehicles or segments with a prefix of “ISS” assume a hardware suite using primarily technologies listed in 
Carrasquillo, et al. (1997) for International Space Station.  Vehicles or segments with a prefix of “ADV” use 
advanced technologies, as appropriate.  Segments listed as Russian On-Orbit Segments of ISS use Russian ISS 
hardware and are provided as a reference.  See RMD (2001) for details. 

Possible types of waste are virtually unbounded, so Table 4-30 and Table 4-33 do not encompass all 
possible types of waste within a space mission.  Further, the waste types are organized according to the subsystems 
and interfaces defined in Section 2.4 and detailed in RMD (2001).   The configurations are not unique, nor are they 
necessarily complete.  However, they provide a documented baseline.  The crew contribution to the waste stream 

                                                           
101 Assumed the Shuttle category wet trash is 30% moisture and so the total percentage of water is 30% of wet trash mass 

divided by the total trash mass. 
102  Assumed the Shuttle category wet trash is 30% moisture and so the total percentage of water is 30% of wet trash mass 

divided by the total trash mass.  
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can enter more than one subsystem or interface.  For example, the crew respiration and perspiration load is first 
received by the life support system within the Air Subsystem, in the form of water vapor, or by the Human 
Accommodations Interface, on the clothing or as the result of crew hygiene maintenance such as bathing.  Thus, 
it is difficult to account for all crew-generated wastes when they are divided between, and applied to, various 
subsystems until a mission is clearly defined. 

The overall waste generation rates, including both Russian and United States On-Orbit Segments, listed 
in Table 4-30 include all currently known waste streams.  This table should be a good estimate of an actual waste 
load for future long duration missions.  There are, however, significant gaps in the data, and the total will likely 
be greater than what is listed here. 
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Table 4-30 International Space Station Reference Mission Vehicle Wastes 

 Assumptions [kg/CM-d]  

Component 

Russian 
Segment, 
Phase 2 

Russian 
Segment, 
Assembly 
Complete 

ISS 
United 
States 

Segment, 
Assembly 
Complete 

ADV. 
TECH. 
 United 
States 

Segment, 
Post-

Phase 2 

ADV. 
TECH. 
 United 
States 

Segment, 
Assembly 
Complete Notes 

Waste Subsystem Hardware       
Compactor      Compactors reduce waste volume and waste storage 

containment mass 
Commode       

Dryer       

Fecal Storage 

0.50 (1) 0.50 (1) 0.50 (1) 0.50 (1) 0.13 (1) 

This entry includes the Russian KTO (Russian solid 
waste container).  Usage is based on mass of waste.  
Mass of waste depends on moisture content, which 
varies between options. 

Lyophilization      This technology yields a dry, stable solid waste and a 
separate greywater component. 

Solid Waste Storage       

Urine Collection       

Urine Pretreatment 0.04 (2) 0.04 (2) 0.01 (2) 0.01 (2)  (3) This entry reflects chemical pretreatment, whether 
Russian or U.S.  This is the mass of chemicals only. 

Subtotal 0.54 0.54 0.51 0.51 0.13  

In cases where particular hardware is not part of the configuration for a specific reference mission, the location within the table is marked with an “.”  When hardware is present, but a storable or 
disposable waste is not produced, a “”appears.  When hardware is present and a storable or disposable waste is produced, a rate, in terms of mass per crewmember per day, is listed.   
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Table 4-31 International Space Station Reference Mission Vehicle Wastes (continued) 

 Assumptions [kg/CM-d]  

Component 

Russian 
Segment, 
Phase 2 

Russian 
Segment, 
Assembly 
Complete 

ISS 
United 
States 

Segment, 
Assembly 
Complete 

ADV. 
TECH. 
United 
States 

Segment, 
Post-

Phase 2 

ADV. 
TECH. 
 United 
States 

Segment, 
Assembly 
Complete Notes 

Waste Subsystem Interfaces       

Air Subsystem 0.13 (4) 0.13 (4) 0.13 (4) 0.13 (4) 0.13 (4) Based on ISS data at Assembly Complete.  Reflects 
spares for the Air Subsystem. 

EVA Support Interface Wastes 0.02 (5) 0.02 (5) 0.02 (5) 0.02 (5) 0.02 (5) The difference in values reflects variations in EVA 
workload. 

Food Interface Wastes       

Prepackaged Food Wastes 0.32 (5) 0.32 (5) 0.32 (5) 0.32 (5) 0.28 (5) 
Assumption: Biomass production reduces prepackaged 
food mass slightly but increases infrastructure and 
other mass requirements. 

Inedible Biomass       

Habitation Interface Wastes     
Expended Clothing   0.23 (5) 0.23 (5) 0.02 (5) Clothing mass reduced by a factor of 40 with laundry. 
Hygiene Wipes 0.23 (5) 0.23 (5) 0.23 (5) 0.23 (5) 0.15 (5)  

Thermal Interface Wastes 0.03 (4) 0.03 (4) 0.03 (4) 0.03 (4) 0.03 (4) Based on ISS data for Assembly Complete. 
Waste Subsystem to Environment      

Urine to Earth 1.83 (1) 0.16 (1)    Assumption: Stowage in EDV. 

Solid Waste to Earth       

Vacuum Vent (Lyophilizer)      Mass losses for Air and Water to be determined. 

Subtotal 3.38 1.71 1.55 1.55 0.63  

In cases where particular hardware is not part of the configuration for a specific reference mission, the location within the table is marked with an “.”  When hardware is present, but a storable or 
disposable waste is not produced, a “”appears.  When hardware is present and a storable or disposable waste is produced, a rate, in terms of mass per crewmember per day, is listed.   
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Table 4-32 International Space Station Reference Mission Vehicle Wastes (concluded) 

 Assumptions [kg/CM-d]  

Component 

Russian 
Segment, 
Phase 2 

Russian 
Segment, 
Assembly 
Complete 

ISS 
United 
States 

Segment, 
Assembly 
Complete 

ADV. 
TECH. 
United 
States 

Segment, 
Post-

Phase 2 

ADV. 
TECH. 
United 
States 

Segment, 
Assembly 
Complete Notes 

Water Subsystem       

Air Evaporator Wicks    0.08 (6) 0.04 (6) 
This value includes air evaporator wicks and urine 
solids.  Assumption: Cases with a biological water 
processor are 50% less massive. 

Flush Water 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) None identified to date. 
Greywater from Dryer to 
Water Subsystem       

Urine Processing System Brine 
to Waste Subsystem       

Urine to Water Subsystem       

Urine Processor 
  0.33 (1,7)   

This entry based on vapor compression distillation 
performance.  Brine is stored in an EDV (Russian 
wastewater container). 

Water Processor Spares 0.33 (4) 0.33 (4) 0.33 (4) TBD TBD  
Miscellaneous 0.89 (5) 0.89 (5) 0.89 (5) 0.89 (5) 0.89 (5) Based on ISS data for Assembly Complete. 
Subtotal 1.22 1.22 1.55 0.97 0.93  

Overall Total 5.14 3.47 3.61 3.03 1.69  

 
In cases where particular hardware is not part of the configuration for a specific reference mission, the location within the table is marked with an “.”  When hardware is present, but a storable or 
disposable waste is not produced, a “”appears.  When hardware is present and a storable or disposable waste is produced, a rate, in terms of mass per crewmember per day, is listed.   
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Table 4-33 Advanced Mars Exploration Reference Mission Vehicle Wastes 

 Assumptions [kg/CM-d]  

Component 

ISS 
TECH. 
Mars 

Transit 
Vehicle 

ISS 
TECH. 
Surface 
Habitat 
Lander 

ISS 
TECH. 
Mars 

Decent 
/ Ascent 
Lander 

ADV 
Mars 

Transit 
Vehicle 

ADV 
Surface 
Habitat 
Lander Notes 

Waste Subsystem Hardware       
Compactor      Compactors reduce waste volume and waste storage 

containment mass 
Commode       

Dryer       

Fecal Storage 

0.50 (1) 0.50 (1) 0.50 (1) 0.50 (1) 0.13 (1) 

This entry includes the Russian KTO (Russian solid 
waste container).  Usage is based on mass of waste.  
Mass of waste depends on moisture content, which 
varies between options. 

Lyophilization      This technology yields a dry, stable solid waste and a 
separate greywater component. 

Solid Waste Storage       

Urinal       

Urine Pretreatment 
0.01 (2) 0.01 (2) 0.01 (2) 0.01 (2)  (3) 

This entry reflects chemical pretreatment, whether 
Russian or U.S.  This is the mass of pretreatment 
chemicals only. 

Subtotal 0.51 0.51 0.51 0.51 0.13  

In cases where particular hardware is not part of the configuration for a specific reference mission, the location within the table is marked with an “.”  When hardware is present, but a storable or 
disposable waste is not produced, a “”appears.  When hardware is present and a storable or disposable waste is produced, a rate, in terms of mass per crewmember per day, is listed.   
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Table 4-34 Advanced Mars Exploration Reference Mission Vehicle Wastes (continued) 

 Assumptions [kg/CM-d]  

Component 

ISS 
TECH. 
Mars 

Transit 
Vehicle 

ISS 
TECH. 
Surface 
Habitat 
Lander 

ISS 
TECH. 
Mars 

Decent 
/ Ascent 
Lander 

ADV 
Mars 

Transit 
Vehicle 

ADV 
Surface 
Habitat 
Lander Notes 

Waste Subsystem Interfaces       

Air Subsystem 0.13 (4) 0.13 (4) 0.13 (4) 0.13 (4) 0.13 (4) Based on ISS data at Assembly Complete.  Reflects 
spares for the Air Subsystem. 

Extravehicular Activity Support 
Interface Wastes  0.25 (5) 0.25 (5)  0.25 (5) The difference in values reflects variations in EVA 

workload. 
Food Interface Wastes       

Prepackaged Food + 
Packaging Wastes 0.36 (5) 0.36 (5) 0.36 (5) 0.36 (5) 0.32 Assumption: Biomass production reduces prepackaged 

food mass slightly. 

Inedible Biomass    0.01 0.01 
Estimates assume 1 m² of growing area producing 
0.1 kg/d fresh biomass with at 90% harvest index and 
90% moisture content. 

Habitation Interface Wastes     
Expended Clothing 0.23 (5) 0.23 (5) 0.23 (5) 0.2 0.02 (5) Clothing mass reduced by a factor of 10 with laundry.   
Hygiene Wipes 0.23 (5) 0.23 (5) 0.23 (5) 0.23 (5) 0.15 (5)  

Thermal Interface Wastes 0.03 (4) 0.03 (4) 0.03 (4) 0.03 (4) 0.03 (4) Based on ISS data for Assembly Complete. 
Waste Subsystem to Environment      

Urine to Earth      Assumption: Stowage in EDV. 

Solid Waste to Earth       

Vacuum Vent (Lyophilizer)      Mass losses for Air and Water to be determined. 

Subtotal 1.53 1.78 1.78 0.74 0.87  

In cases where particular hardware is not part of the configuration for a specific reference mission, the location within the table is marked with an “.”  When hardware is present, but a storable or 
disposable waste is not produced, a “”appears.  When hardware is present and a storable or disposable waste is produced, a rate, in terms of mass per crewmember per day, is listed.   
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Table 4-35 Advanced Mars Exploration Reference Mission Vehicle Wastes (concluded) 

 Assumptions [kg/CM-d]  

Component 

ISS 
TECH. 
Mars 

Transit 
Vehicle 

ISS 
TECH. 
Surface 
Habitat 
Lander 

ISS 
TECH. 
Mars 

Decent 
/ Ascent 
Lander 

ADV 
Mars 

Transit 
Vehicle 

ADV 
Surface 
Habitat 
Lander Notes 

Water Subsystem       

Air Evaporator Wicks    0.08 (6) 0.04 (6) 
This value includes air evaporator wicks and urine 
solids.  Assumption: Cases with a biological water 
processor are 50% less massive. 

Flush Water 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) 0.00 (2) None identified to date. 
Greywater from Dryer to 
Water Subsystem       

Urine Processing System Brine 
to Waste Subsystem       

Urine to Water Subsystem       

Urine Processor 
0.33 (1,7) 0.33 (1,7)  0.33 (1,7)  

This entry based on vapor compression distillation 
performance.  Brine is stored in an EDV (Russian 
wastewater container). 

Water Processor Spares TBD TBD TBD TBD TBD  
Miscellaneous 0.89 (5) 0.89 (5) 0.89 (5) 0.89 (5) 0.89 (5) Based on ISS data for Assembly Complete. 
Subtotal 1.22 1.22 0.89 1.30 0.93  

Overall Total 3.26 3.51 3.18 2.55 1.93  
 

In cases where particular hardware is not part of the configuration for a specific reference mission, the location within the table is marked with an “.”  When hardware is present, but a storable or 
disposable waste is not produced, a “”appears.  When hardware is present and a storable or disposable waste is produced, a rate, in terms of mass per crewmember per day, is listed.   
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4.3.3 SOLID WASTE MANAGEMENT FOR FUTURE LONG-DURATION MISSIONS 
Waste treatment and removal for missions to Mars and other likely near-term destinations will be more 

challenging due to the longer mission duration, regardless of complications from the environment.  Waste 
management for such missions may employ more efficient versions of technologies developed for Shuttle and ISS, 
or completely different approaches may be more cost effective.  Future missions will also generate significant 
amounts of inedible biomass.  In later or far-term missions, inedible biomass may dominate all other waste sources.  
See, Table 4-99 for example, and Section 4.13.  Finally, depending on the mission protocols, indefinite stable 
storage for the end products of any waste-processing scheme will be necessary. 

Historically, wastes generated during human space flight are materials with no further utility requiring 
only storage until mission’s end.  However, Exploration Waste Subsystems may reclaim resources from input 
wastes allowing greater closure within the overall life support system.  It is also plausible that wastes from previous 
missions could be processed for useful resources on subsequent missions as additional technologies become 
available during accumulation of infrastructure. 

The following tables provide data for various waste products, organized with references.  Though not 
listed here, waste volumes can be significant.  Further, although wastes are listed separately below, some wastes 
may be contained in or associated with other wastes.  For example, feces may adhere to toilet paper, waste food 
may adhere to corresponding food packaging, and miscellaneous body wastes may adhere to hygiene wipes and 
dissolve or suspend in hygiene water.  Also, various degrees of source separation are possible.  For example, 
contaminated toilet paper might be collected in a container separate from the feces collector, or contaminated food 
packages might be collected separately from waste food. 

These tables do not list all possible waste types for human space flight.  Because many spacecraft systems 
routinely replace parts during scheduled maintenance on long-duration missions, a comprehensive list of wastes 
is contingent upon the hardware and configurations used throughout the vehicle.  Thus, for a full understanding of 
equipment-related wastes during a particular mission, the replaceable units for each piece of hardware must be 
known, including any associated packaging.  Rather, the tables list the wastes that are commonly of interest to 
advanced waste technology developers, due to an anticipated presence or processing potential.  Processing 
potential may be related to resource recovery potential and anticipated pre-disposal treatment requirements.  The 
tables list materials that have historically been sent to the Waste Subsystem.  Thus, wastes such as carbon dioxide 
gas and trace gas contaminants are not included here. 

As noted above, most wastes depend upon the life support system or vehicle design.  For example, the 
rate of clothing supply and associated waste generation depends on the presence of a laundry system.  The rate 
waste is generated from food packaging depends on the degree of food bioregeneration, or crop growth, within the 
vehicle.  Further, the quantity and composition of metabolic wastes depend on the composition and quantity of 
food consumed; greater metabolic demands and greater consumption of dietary fiber may alter the generation rate 
for feces. 

The tables present several mass values for some wastes.  In such cases, an asterisk denotes the “preferred” 
or suggested value for waste models if there is an appropriate entry for that particular waste with other important 
defining factors about the waste being unknown.  The suggested values are also summarized in Table 4-36.  The 
variability between sources is somewhat indicative of the variability in data collection methods.  When known, 
the data variability is provided below.  Additionally, when known, variation of waste mass and composition with 
particular environmental parameters are noted, allowing for customization of waste characteristics for a specific 
purpose.  The degree of confidence in data values is highly variable and often unknown.  In some cases, data have 
not been diligently collected, and mass estimates are included.  In other cases, the values are contingent upon 
environmental variables.  Finally, the original or earliest data source available for a particular value is listed first, 
followed by other sources that reference the earliest source. 
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Table 4-36 Summary Information on Wastes for Developing Waste Models for Future Long-Duration 
Missions 103 

 Assumptions [g/CM-d]  

Waste lower Nominal upper References 
Equipment Wastes  TBD (1)  (1)  

Table 4-45 Other 
Waste Streams 

(2) Table 4-39
 Menstruation 

(3) Table 4-43 Selected 
References on Food 
Packaging, Inedible 
Biomass, and Wasted 
Food 

(4) Table 4-42
 Disposable 
Hygiene and Cleaning 
Products 

(5) Table 2-1 
(6) Section 4.3.3.9 
(7) Table 4-41 

(8) Table 4-42 
(9) Table 4-38 
(10) Table 4-40 
(11)  Ewert & Jeng 2015 
 

Experiment Wastes  TBD (1)  
Extravehicular Activity Maximum 
Absorption Garments (MAGs) 104  173 (1) 89  

Feminine Wastes: 105    
Menstrual Hygiene Products  104 (2) 90  
Menses  113.4 (2) 90  

Food Packaging and Adhered Food  324 (3)  
Gloves  7 (4)  
Grey or Duct Tape  33 (5)  
Greywater  TBD (6)  
Greywater Brine  TBD (6)  
Human Detritus:    

Finger and Toe Nails  0.01 (7)  
Hair  0.33 (7)  
Mucus  0.4 (7)  
Saliva Solids  0.01 (7)  
Skin Cells  3 (7)  
Skin Oils  4 (7)  
Sweat Solids  8 (7)  

Hygiene Products, Miscellaneous  TBD (5)  
Inedible Biomass and Wasted Crop 
Materials  TBD (3)  

Laundry: Clothing, Towels and 
Wash Cloths  230 (11)  

Medical Wastes  TBD (1)  
Metabolic Wastes:    

Feces  123 (8)  
Urine  1,562 (9)  

Paper  77 (5)  
Wipes:    

Toilet Paper  28 (10)  
Wipes, Detergent  58 (4)  
Wipes, Disinfectant  56 (4)  
Wipes, Dry  13 (4)  
Wipes, Wet  51 (4)  

4.3.3.1 FECES 

The mass and composition of feces varies with, among other factors, the quantity and composition of 
consumed food.  Additional fiber in the diet is known to increase daily stool mass (Tucker, et al., 1981).  Wydeven 
                                                           
103 This table includes both wet and dry components.  Component moisture content is presented in the references. 
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and Golub (1990) provide detail for dry human feces.  Hawk (1965) states “…the amount of fecal discharge varies 
with the individual and diet.  Various authorities claim that on an ordinary mixed diet the daily excretion by an 
adult male will aggregate 110-170 g with a solid content ranging between 25 and 45 g; the fecal discharge of such 
an individual on a vegetable diet will be much greater and may even be as great as 350 g and possess a solid content 
of 75 g.” 

Feces composition is described in Wignarajah, et al (2006). The physical consistency of feces is also 
highly variable between crew members and within the same crew member over the mission. 

NASA HIDH (2014) states that the fecal collection system “must be capable of collecting and containing 
an average of 150 grams (by mass) and 150 mL (by volume) of fecal matter per crewmember per defecation at an 
average two defecations per day”. Consult the HIDH for additional information on maximum design values such 
as containment of 1.5 L of diarrhea discharge. Table 4-37 summarizes mass and composition information on feces 
from several sources. Note that values in this table are more typical average values versus conservative design 
values from the HIDH in the paragraph above. 

Table 4-37  Feces 

Waste Units Value Comments 
Feces g/CM-d 123 (1) Composition: 32 g/CM-d solids and 91 g/CM-d water. 

Ingested Food Composition: not available. 
 

g/CM-d 114 (2) 
Composition: 32 g/CM-d “dehydrated residue” (4.5 g/CM-d fat, 
4.5 g/CM-d protein, 1.8 g/CM-d cellulose, 9.5 g/CM-d inorganic 
matter, 11.4 g/CM-d bound water) and 82 g/CM-d water. 
Ingested Food Composition: not available. 

 g/CM-d 120 (3,4) Composition: 20 g/CM-d solids and 100 g/CM-d water. 
Ingested Food Composition: not available. 

 

g/CM-d 95.5 (5,6) 

Composition: 20.5 g/CM-d solids (19.5 g/CM-d standard deviation) 
and 75 g/CM-d water. 
Ingested Food Composition: “relatively low fiber diet, not unlike 
that eaten while in space.” 
Note: 24 h mean sample; standard deviation of 95.7 g/CM-d. 

 g/CM-d 132 (7) Composition: 21 g/CM-d solids and 111 g/CM-d water. 
Ingested Food Composition: not available. 

   
g/CM-d 30 (8) 

Composition: 30 g/CM-d solids. 
Ingested Food Composition: not available. 
Note: Dry mass only.  Wet mass unavailable. 

Table References: (1) NASA (1991), (2) LSDB (1962), (3) BDB (1973), (4) Parker and Gallagher (1992), 
(5) Wydeven and Golub (1990), (6) Diem and Lentner (1970), (7) Schubert, et al. (1984), (8) Tucker, et al. (1981). 

4.3.3.2 URINE 

The mass and composition of urine varies with the individual, with the quantity and composition water 
and food consumed, as well as with other factors.  Wydeven and Golub (1990) provide detailed estimates of human 
urine. For more recent information on calcium in urine issues during spaceflight, see Smith (2012) and Smith 
(2014). 

(NASA HIDH, 2014) states that the urine collection devices shall have the capacity to accommodate urine 
output volume of 3,000 mL/CM on the first flight day and 2,000mL/CM-d after that and a discharge up to 1000 mL 
in a single urination event at a delivery rate of up to 50 mL/s. 

Depending on the post-urination-event cleansing methods, urine may adhere to toilet paper or wipes.  
Depending on the life support system configuration, urine may or may not be included with greywater.  Table 4-38 
summarizes information on urine. Quantity varies based on fluid intake, which has been increasing on board ISS 
in recent years. 

                                                           
104 Units for this category: grams per crewmember per EVA event [g/CM-EVA]. 
105 The waste production rates in this category only exist for a woman during her menstrual period.  Thus, units for this 

category are: grams per crewmember per menstrual period [g/CM-℘]. 
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Table 4-38 Urine 

Waste Units Value Comments 
Urine g/CM-d * 1,562 (1-4) Composition: 59 g/CM-d solids and 1,503 g/CM-d water. 

Ingested Food Composition: not available. 
 g/CM-d 1,700 (5) Composition: 70 g/CM-d solids and 1,630 g/CM-d water. 

Ingested Food Composition: not available. 
 g/CM-d 1,470 (6) Composition: 70 g/CM-d solids and 1,400 g/CM-d water. 

Ingested Food Composition: not available. 
 

g/CM-d 2,107 (7,8) 

Composition: not available. 
Ingested Food Composition: not available. 
Note: 24 h mean sample; standard deviation of 1,259 g/CM-d. 106  
The wet mass was calculated from urine volumes assuming a 
density of 1.02 g/mL. 

 
g/CM-d 1,390 (9) 

Composition: not available. 
Ingested Food Composition: not available. 
Note: The wet mass was calculated from urine volumes assuming a 
density of 1.02 g/mL. 

Table References: (1) BDB (1973), (2) NASA (1991), (3) Wydeven and Golub (1990), (4) Schubert, et al. (1984), 
(5) MSIS (1995), (6) LSDB (1962), (7) Parker and Gallagher (1988), (8) Diem and Lentner (1970), (9) Leach (1983). 

4.3.3.3 MENSTRUATION 

Normally, adult female human beings menstruate once every 26 to 34 days for a duration of 4 to 6 days 
(NASA HIDH, 2014).  These excretion products provide another waste generation source.  Menstrual flow is 
highly variable between individuals.  Consequently, menstrual pad and tampon use is also highly variable between 
individuals.  Female crewmembers on ISS use medication before flight to prevent menstruation for up to six 
months during flight.  This approach, for many reasons, may not be acceptable for longer duration flights.  
Depending on the menstruation management and cleansing method used, menses may adhere to tampons, 
menstrual pads, toilet paper, or wipes.  Table 4-39 summarizes information on menstruation using units of grams 
per crewmember per menstrual cycle [g/CM-d]. 

Table 4-39 Menstruation Byproducts 

Waste Units Value Comments 
Menses g/CM-d * 113.4 (1) Composition: 80% is released during the first 3 d of menstruation. 

Note: Menstrual period duration is 4 to 6 d every 26 to 34 d. 
g/CM-d 28 (2,3) Composition: 10 g/CM-d solids (estimated). 

Menstrual 
Pads and 
Tampons 

g/CM-d 104 (3) 
Note: Mean estimated tampon or menstrual pad usage is 
16.2 products/CM-d.  The average menstrual product (menstrual 
pads or tampons) is 6.4 g/product (clean). 

Table References: (1) NASA HIDH (2014), (2) Hallberg and Nilsson (1964), (3) Parker and Gallagher (1992). 

4.3.3.4 TOILET PAPER 

Toilet paper usage varies with production rates and consistency of metabolic waste excretions.  For all 
crewmembers, toilet paper is an important cleansing agent.  Because of relatively frequent resupply, toilet paper 
usage on current human missions, such as ISS, may not be as frugal as possible for longer-duration missions with 
more-limited or no resupply.  Thus, the value provided in Table 4-40 may be an upper limit. 

 

                                                           
106 78% of the variation in urine output could be explained by variations in fluid consumed.What does this refer to and 

what is the reference for it? 
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Table 4-40 Toilet Paper 

Waste Units Value Comments 
Toilet Paper g/CM-d * 28 (1) 107  

g/CM-d 5.1 (2,3) 
Note: Value computed assuming 6.0 g per bowel movement and 
0.86 bowel movements/CM-d based on statistical data.  
Additionally, for female crewmembers, add 36 g/CM-d to support 
post-urination cleansing following each of 6 urinations/CM-d. 

Table References: (1) Personal communication with S. Maxwell/Boeing in 2001, (2) Parker and Gallagher (1992), 
(3) Wydeven and Golub (1990). 

4.3.3.5 MISCELLANEOUS BODY WASTES 

In addition to metabolic excretions, human beings also shed various wastes from the exposed surfaces of 
their bodies.  These include sweat solids, dead skin cells and associated oils, hair, saliva solids, mucus, and finger 
and toe nails.  Estimates and data for these waste stream components are detailed in Table 4-41. 

Sweat solids may adhere to clothing, hygiene wipes, towels, wash cloths, and dissolve or suspend in 
hygiene greywater.  Wydeven, and Golub (1990) and BDB (1973) provide approximate compositions for dry solids 
in sweat. 

Dead skin cells, once free from the surface of the body, exist as cabin “dust,” and collect in the cabin air 
filter.  However, some skin cells may adhere to clothing, hygiene wipes, towels, washcloths, or suspend in hygiene 
greywater.  Wydeven, et al. (1989) provides estimates for particle and dust generation rates by human beings 
within a space station. 

Table 4-41 Miscellaneous Body Wastes 

Waste Units Value Comments 
Sweat Solids g/CM-d  18 (1)  

g/CM-d 3 (2,3)  
Skin Cells g/CM-d 3 (2,3)  
Skin Oils g/CM-d 4 (2,3)  
Hair 

g/CM-d 0.33 (2,3) 
Composition: 0.3 g/CM-d for facial shaving and 0.03 g/CM-d for 
depilation. 
Note: The study used only male subjects. 

Saliva Solids g/CM-d 0.01 (2,3)  
Mucus g/CM-d 0.4 (2,3)  
Finger and 
Toe Nails g/CM-d 0.01 (2,3) 

 

Table References: (1) NASA (1991), (2) LSDB (1962), (3) NASA HIDH (2014). 

4.3.3.6 DISPOSABLE HYGIENE AND CLEANING PRODUCTS 

Aboard ISS, crewmembers use a variety of wipes and gloves for various housekeeping and hygiene tasks, 
as shown in Table 4.43.  Four types of wipes are listed below, and usage rates are based on recent ISS experience. 

                                                           
107 Charmin (2002) claims that “the average person uses 57 sheets [of toilet paper] per day,” or 23 g/CM-d. 
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Table 4-42 Disposable Hygiene and Cleaning Products 

Waste Units Value Comments 
Gloves g/CM-d 16 (1) Usage: Nitrile gloves to clean the toilet and other surfaces. 
Wipes    
Dry g/CM-d 37 (1) Usage: Tempo wipes for various cleaning tasks.  
Wet 

g/CM-d 89 (1) 
Usage: Huggies® brand Natural Care wet baby wipes/CM-d.  K. 
Clark/ARC  Personal Communication in2003) states that Huggies® 
wet baby wipes at 75% moisture have a mass of 10.9 g/wipe. 

Russian 
gauze-y g/CM-d 37 (1)  

Disinfectant g/CM-d 22(1)  

Table Reference: (1) Ewert (2016) AES Logistics Reduction Project model. 

4.3.3.7 FOOD PACKAGING, INEDIBLE BIOMASS, AND WASTED FOOD 

The food system, whether prepackaged or based on the conversion of crops, invariably generates a 
significant and unique waste stream.  Prepackaged food systems generate waste streams including packaging, 
comprised of plastic bonded to a metallic layer, with adhered food.  Crop-based food systems generate wastes 
associated with the crops and with the conversion of crops to finished entrees.  Finally, the crew for many reasons 
may waste food in either system. 

The first estimate in Table 4-43 provides an estimate of the minimal waste stream from a prepackaged 
food system.  Levri, et al. (2001) assumed ambient-stored, prepackaged food, similar in nature to the Shuttle 
Training Menu.  Further, each crewmember requires metabolic energy from food and only 3% of all prepackaged 
food and rehydration water was assumed to be wasted.  This is a lower practical wastage limit to estimate the 
material wasted if the crew attempted to eat all of the food in every package that was opened.  The food wastage 
represents approximately 3% of prepackaged food and rehydration water adhered to the sides of the packaging.  
Additionally, this study assumed that a small salad crop provides less than 1% of the crew’s food energy needs. 

The second estimate, from personal communication with S. Maxwell/Boeing in 2001b, an unpublished 
source to date, studied actual ISS food usage rates.  This study collected information on the preferred menus of 
three ISS occupants during one expedition and computed the daily average per crewmember usage rates for food, 
packaging, and rehydration water.  This study additionally assumed that 15% of all food packages shipped to ISS 
were unopened and discarded and that 5% of all opened food with any rehydration water was discarded while 
adhered to the food packaging.  The actual values in Table 4-43 assume modified packaging numbers to reflect 
more recent food packaging mass data as presented in Levri, et al. (2001). 

Crops and food processing may generate wastes during crop production, in the form of inedible biomass 
and expended nutrient solution or other growth support agents, and post-harvest during the production of food 
products and meals from the crops, in the form of wasted edible biomass, cleansing agents, food preparation fluids 
and agents, and even plate waste.  These waste generation rates are highly variable and mission dependent. 

Table 4-43 summarizes information on food packaging, inedible biomass, and wasted food. 
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Table 4-43 Selected References on Food Packaging, Inedible Biomass, and Wasted Food 

Waste Units Lower Nominal Upper Comments 
 
 
Food 
Packaging 
Waste 

kg/ 
CM-d 

 
 
 

0.23 (2) 0.26 (1) 

 
 
 
0.31 

Lower & Nominal values of plastic packaging are based 
on Metabolic Energy = 11.82 MJ/CM-d and Ingested Food 
Composition = ambient-stored, prepackaged food system. 
Lower value assumes that 10% of the food packaging 
launched never reaches the trash because there will be 
food reserves left at the end of a nominal mission. 

Waste 
Food 
Adhered to 
Packaging 

kg/ 
CM-d 

 
0.06 (1) 0.10 (2) 

 Lower value: 62 g/CM-d adhered food (~73% moisture 
content, including beverages). 
Nominal value represents 7% adhered, of 90% of mission 
food consumed (46.4% moisture). 

Inedible 
Biomass 
and 
Wasted 
Crop 
Materials 

kg/ 
CM-d 

 

TBD 

 Note: Highly mission dependent.  See Table 4-96for 
inedible biomass productivity under typical crop growth 
chamber conditions.  See Table 4-98 for examples of diets 
using crops. 

Table References: (1) Levri, et al. (2001), (2) 2014 Logistics Reduction model v.2.5 

4.3.3.8 PAPER, TAPE, MISCELLANEOUS HYGIENE PRODUCTS, AND CLOTHING 

Human activities generate a number of waste streams not related to metabolic activity.  In particular, 
documentation generates waste paper, tape is used to seal plastic garbage bags, crew hygiene activities contribute 
many items to the waste stream, and clothing, when used, adds another waste stream for long-duration missions. 

ISS uses paper for documentation and the data point in Table 4-30 is based on ISS usage rates.  Waste 
paper generation rates can vary significantly between ISS increments and may not be closely correlated to the 
number of crewmembers.  It is theorized that the relatively frequent upload and download of supplies to ISS is 
strongly related to the somewhat high rate of waste paper generation from documentation.  Much lower waste 
paper generation rates for documentation are likely on longer-duration missions with little or no resupply. 

Grey or duct tape has traditionally been used on Shuttle and ISS missions to bind bags of trash.  On future 
missions, the crew may utilize other approaches for sealing trash bags and other tasks where tape might be used.  
Thus, tape usage is contingent on vehicle design. 

As noted in Table 4-42, waste generation rates associated with personal hygiene products can be 
significant.  The data here are based on ISS usage rates.  These values may include items such as commercial-off-
the-shelf (COTS) dental floss, toothbrushes, and containers for toothpaste, shave cream, razors, mouthwash, 
shampoo, moisturizing lotion, deodorant, sun block, lip balm, makeup, and similar personal hygiene products.  It 
may be possible to reduce these through custom design containers but given the emphasis on COTS to reduce 
costs, that may be unlikely. Theoretically, the relatively frequent resupply schedule for ISS is strongly correlated 
to the surprisingly high rate of miscellaneous hygiene product waste generation because the individual crew 
products may not be completely used during an ISS crew rotation. 

Clothing usage and associated dirty clothing generation rates are also significant historically, as 
documented in Table 4-48 for the early years of ISS.  Actual expended clothing generation rates have been less 
than these early projections and a more recent value is found in Table 4-36.  A laundry can increase clothing life, 
thus reducing waste generation rates associated with discarded clothing, at a cost of other vehicle resources such 
as power, crewtime, and water usage. 

As a simplifying assumption, clothing is comprised of 100% cotton and has 8.5% moisture content when 
clean and dry, which is an industry standard for cotton.  Actual clothing may be comprised of other materials that 
are more efficient and fire retardant, but historically crewmembers prefer clothing with higher cotton content.  
Cotton has also been used for ISS due to fire considerations.  Clothing is in close contact with skin and will char 
rather than melt during a fire or high heat event. Recent AES Logistics Reduction and Repurposing Project research 
has investigated wool, monoacrylic, and cotton polyester blends as possible replacements for cotton based clothing 
(Broyan 2014). 

 However, clothing will probably not be discarded in clean form.  Rather, clothing, towels, and washcloths 
will likely contain skin cells, sweat solids, skin oil, hair, and other miscellaneous body wastes.  Towels and 
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washcloths will likely also contain moisture from sweat and bathing.  McGlothlin (2000) reports that the average 
49-g Class III 108 Shuttle washcloth, measuring 30.5 cm by 30.5 cm and comprised of 100% cotton, retains up to 
202 g of water when completely soaked.  On ISS, crew members typically allow their wash cloths, towels, and 
clothes to air dry prior to disposal to allow recovery of the moisture. 
Table 4-44 summarizes information on waste streams from paper, tape, miscellaneous hygiene products, and 
clothing. 

Table 4-44 Composition of Paper, Tape, Miscellaneous Hygiene Products, and Clothing 

Waste Units Value Comments 
Paper g/CM-d 77 (1) Composition: 6% moisture content. 
Grey or Duct 
Tape g/CM-d 33 (2) 

Note: This value is highly design contingent. 
The value here represents ISS usage. 

Misc. Hygiene 
Products g/CM-d 781 (1) 

Note: This value is highly design contingent.  The value here 
represents ISS usage.  Future missions may allow much lower waste 
generation rates from miscellaneous hygiene products. 

Clothing, 
Towels, and 
Wash-cloths 

g/CM-d 230 (3) 
Composition: 100% cotton solids, with 8.5% moisture content 
(clean and dry). 
 

Table References: (1) Personal communication with S. Maxwell/Boeing in2001, (2) Wydeven, et al. (1989),          
(3) Ewert (2013). 

4.3.3.9 GREYWATER AND BRINE 

Wastewater and brines, though historically processed by the Water Subsystem, may initially or after 
processing pass to the Waste Subsystem.  Section 4.2.2 lists wastewater generation rates and stream compositions.  
However, these tables do not provide greywater generation data for configurations with crop production or food 
processing.  Greywater production from such activities depends on the crops produced, the growing techniques, 
the crop processing approaches following harvest, the food processing technology, and the processing equipment 
and crop cleansing approaches.  Finally, greywater may also include urine. 

In general, greywater production rates and, more importantly here, the rate of wastewater transfer to the 
Waste Subsystem, are highly dependent upon the vehicle design.  The individual greywater production rates are 
variable, and decisions about how the wastewater streams are managed significantly influence the wastewater and 
brine loads passed to the Waste Subsystem. 

Brine production rates depend primarily upon the architecture of the water system.  If greywater is 
processed for reuse, the degree of recovery determines the composition of the brine remaining after treatment.  
Most advanced physicochemical water processors recover up to 95 to more than 99% of the water within the input 
greywater stream. 

 

4.3.4 ELEMENTAL COMPOSITION OF WASTE 
4.3.4.1 MODELING WASTE SYSTEMS 

Table 4-47 represents approximate elemental compositions for some components that make up the waste 
stream.  Approximations of the major constituents of the waste stream and an assumed end product of CO2 and 
H2O or CH4 will allow a quantitative look at mass of end products in the proposed reaction.  Using tools such as 
this can lead to system mass balances that can be quite useful in looking at loop closure modeling for life support 
by tracking carbon, oxygen, nitrogen and hydrogen.  This approach yields a simplified but beneficial model. 

Different missions will likely have different requirements in the waste stream produced and in the amount 
of waste produced.  A transit mission, to the lunar surface might be roughly equivalent to a Space Shuttle mission 
because they all originate from relatively short missions.  From the initial mass of input components, all the product 
and waste components can be calculated.  The feces produced is 123 grams CM- 1d-1 Table 4-37, is 70% water by 
mass initially, and the dry initial mass of feces is 36.9 grams CM- 1d-1.  A 300 day mission for four crew members 
could produce 44 kg of feces.  If completely oxidized this could produce 32 kg of water in addition to the 103 kg 
                                                           
108 Note: “Class III” hardware is dimensionally the same and functionally similar to flight, or “Class I,” hardware.  

However, Class III hardware is not, in general, identical to Class I hardware. 
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from the initial drying step. This approach provides insight into the amount of waste generated and the potential 
yield of useful commodities gained from waste component recycling. The results of some calculations based on 
stoichiometry by assuming waste is composed of only major elements, are shown in Equation 4-1. 

Usually the waste product is a polymer and the estimation is made assuming the molecular weight of the 
polymer building block.  For example, cellulose is composed of linked chains of glucose molecules.  Paper is made 
of wood pulp which consists mainly of hexose and pentose chains of simple carbohydrates.  This allows a modeling 
relationship between the mass of wastes on prior missions and the stoichiometry used to predict the product. 

 

42 69 13 5 2 2 2 252.75 42 34.5 2.5C H O N O CO H O N+ → + + 109 Equation 4-1 

A stoichiometric 
approach to 
oxidation of feces 

4.3.4.2 OTHER WASTE STREAMS 

Several other notable waste streams are possible.  Wastes associated with extravehicular activities depend 
on the frequency of extravehicular activities.  Other waste streams from equipment, experiments, and medical tests 
are highly variable and depend on the vehicle and mission architecture. 

Extravehicular activities (EVA) supply waste streams to the life support system.  While some wastes are 
gaseous, others are solid wastes.  Most significantly, crewmembers are provided with a maximum absorption 
garment (MAG) to catch metabolic wastes.  A used garment may be contaminated with urine, feces, and other 
wastes associated with exposure to human skin.  The data in Table 4-45 is based on ISS equipment and production 
rates in terms of grams per crewmember per EVA sortie [g/CM-EVA].  Data on other likely EVA wastes, such as 
food sticks, drink pouches, and batteries, were unavailable.  EVA consumption rates for consumables are given in 
Table 4-45 although these values do not reflect solid waste production rates.  Equipment wastes are highly variable 
and depend upon the overall vehicle design.  Equipment wastes include supplies for life support hardware, such 
as filters and plastic bags.  Generally, the Waste Subsystem design depends upon the life support system 
architecture, including the degree of resource recovery and containment for pre-processing storage, post-
processing storage, and disposal.  For example, a system in which there is no recovery from solid wastes, such as 
on ISS, may require more Waste Subsystem resupply items than a system that reuses or recovers resources.  
Regarding storage options, some equipment wastes might be returned to its original stowage volumes, although 
cleaning may be required before such an approach is acceptable.  For example, contaminated membranes from the 
Water Subsystem might be cleaned to remove water wastes and then stowed in the original stowage volume for 
membranes.  Experimental wastes are highly variable and depend upon experimental procedures and the mission 
objectives.  Some waste materials may be hazardous.  Medical wastes are also highly variable and depend upon 
medical protocols.  These waste loads could be very sporadic and may require special handling.  Some waste 
product materials may even be a biohazard.  Table 4-45 summarizes information on EVA, equipment, experiment, 
and medical waste streams. 

                                                           
109 [personal communication with K. Wignarajah in 2008] has measured an O/C ratio of 0.6-0.7 and sites several 

references including [Liu, 2008] and [Tikhomirov, 2003] that are in agreement.  There is however a great deal 
of variability in feces composition due to dietary variability.  This should be considered by analysts, as the 
literature is not conclusive. 
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Table 4-45 Other Waste Streams110 

 
Waste Units Value Comments 
EVA Wastes g/CM-

EVA 173 (1) 
Note: This value represents the maximum absorption garment (clean 
and dry) 

Equipment 
Wastes g/CM-d TBD 

Note: Highly variable and dependent on vehicle design. 

Experiment 
Wastes g/CM-d TBD 

Note: Highly variable and dependent on mission design.  Waste 
streams delegated to the Waste Subsystem will depend on mission 
protocols.  Some wastes may be hazardous. 

Medical Wastes 
g/CM-d TBD 

Note: Highly variable and dependent on mission medical protocol.  
Waste streams delegated to the Waste Subsystem will depend on 
mission protocols.  Some wastes may be biohazards. 

 

4.3.5 WASTEWATER RECOVERY MODEL FOR A LUNAR SURFACE MISSION 
Prior to performing a system level trade study to evaluate the potential effect of recovering water from waste, 

it is necessary to have a waste model that reasonably characterizes the anticipated waste streams.  Similarly, in 
combination with Research and Technology Development (R&TD), and Waste Management System (WMS) 
requirements and drivers, this waste model will drive technology development..  A significant amount of previous 
work has been performed that identified potential wastes from various historical mission scenarios, both from post-
mission analyses of discarded wastes as well as supply uploading information.  This information is largely kept 
current within this document. There is no widely-established waste model for a long-duration lunar surface mission 
at this time.  Therefore, mission analyses are often conducted using analysis-specific (customized) waste models 
that employ varying assumptions and design values. 

A major goal of this waste model development effort is to generate a central “working document” that is 
widely accessible and that could serve as a focal point for continuing refinement.  Developing this type of waste 
model for new classes of missions that are still in initial planning creates a significant amount of uncertainty.  
Therefore, it is anticipated that data contained in this model could change significantly as mission definition and 
development progresses.  This waste model is therefore not intended to be a final product, but rather a beginning 
point.  With this in mind, the model was constructed using a spreadsheet format that allows users to readily change 
mission assumptions, mission design values and even add functionality (Hogan, 2010). 

A full characterization of wastes requires a large number of parameters.  The most pertinent waste 
characteristics that require examination for a water balance study include the waste type, mass, and moisture 
content.  These data are sufficient to estimate the water recovery potential and are the central data for this model 
development.  Additional data will eventually be needed for a more refined analysis to support detailed waste 
processing equipment selection, sizing, and integration studies.  These additional data may include waste volume 
in relevant waste mixtures and under different levels of compaction (e.g., none, manual, mechanical, heat-melt), 
including materials of construction, elemental composition, and biodegradability.  As such, the wastes would need 
to be generated in a realistic fashion and processed in actual WMS technologies to obtain much of this information. 

4.3.5.1 MODEL DEVELOPMENT AND CHARACTERISTICS 

The data collected for this model were obtained or derived from a number of sources including various technical 
papers, textbooks and previous waste model studies. The general approach was to identify the anticipated wastes 
and to classify them according to waste similarity and/or subsystem/operation.  Although certain waste streams 
are currently difficult to predict or are unplanned (e.g., experiment wastes, biomass production), those classes were 
included to ensure they are addressed as data become available. 

The model is designed to allow the user to select various mission parameters.  This includes the crew size 
during the nominal mission, as well as during any mission overlap period.  The mission overlap period is that time 
between when a new crew arrives and the old crew departs.  Estimates appear to vary with exactly how long this 

                                                           

110 Table Reference: EDCC (1998). 
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overlap period will be, but 30 days appears to be the current maximum.  Likewise, the mission duration and overlap 
period are specified as model parameters.  The average percent of female crewmembers is required in that males 
and females impose different hygiene waste loads.  

EVA is accounted for by requesting the average number of EVA sorties per day. Currently, the only 
calculation that EVA pertains to is the generation of Maximum Absorbency Garments (MAGs).  It is assumed that 
each EVA performed by a crewmember requires a fresh MAG, and that the EVA duration is approximately 7-8 
hours.  Even though the assumed average EVA rate may be fractional, in total the number will be equivalent to 
the total number of MAGs utilized.  An important feature of the MAG as a waste item is that it will contain human 
urine and feces.  Extended EVA will result in a significant portion of a crewmember’s daily urine generation to be 
trapped in the MAG.  No data were found that approximate the average percentage, so a value of 33% was 
estimated.  It is also unclear what percentage of fecal wastes will be contained in a used MAG, but it is assumed 
that the crew will be resistant to defecate in the MAG during EVA.  Therefore, it was assumed that MAGs contain 
10% of fecal waste.  This is equivalent to defecating a one-day amount of feces once out of every ten EVA 
operations.  This appears reasonable considering the long duration of EVA periods.  

Another related assumption is that a certain fraction of defecations will be diarrheal.  This is important in 
that diarrhea will contain much higher amounts of water than nominal feces.  From NASA HIDH (2014), it was 
assessed that each diarrheal event would be 0.5 L on average.  Additionally, it is assumed that the same amount of 
fecal solids are contained in that volume, and that the remainder is composed of water.  As no data were found 
with regards to the average number of diarrhea events, particularly for a Lunar mission, it was assumed that one 
defecation per month was diarrheal. 

The data inputs for the actual mass and water content of wastes expected for the model waste components 
were provided as nominal, minimum, and maximum values.  The nominal values were selected to be the most 
likely value at this point in the mission planning.  The minimum and maximum values were provided to give a 
reasonable design range.  This is anticipated to be valuable for technology developers when sizing waste processing 
and storage equipment.  These upper and lower values were synthesized by evaluating data ranges (when available) 
or by alternatively assuming a percent variance from nominal.  

Using the various mission parameters, waste component design mass values and moisture content are 
calculated and listed separately in a separate area of the spreadsheet.  These data are summarized in the final section 
to allow the user to easily discern the totals of various waste stream component mixtures.  This was performed 
because there are uncertainties within the mission architecture that will play a critical role in what the WMS will 
receive, and therefore, what the WMS must accommodate.  For example, if wastewater brine is not processed 
further by dewatering, this waste stream will exert a strong influence on overall waste stream water content and 
how the waste system must be designed to process/store it. 

4.3.5.2 LUNAR OUTPOST WASTE MODEL RESULTS 

Table 4-46 contains a model used to calculate lunar outpost wastes.  Again, it must be noted that certain 
design assumptions are currently under development, and significant changes in the assumptions are likely with 
time.  Therefore, it is valuable to approach the results of this model as preliminary guidance, rather than final 
results (Hogan, 2010). 

Hogan gave results for the total mass of lunar outpost mission wastes for the case of 4 crew staying 210 
days and a second crew of 4 overlapping for the last 30 days. Here only normalized data will be presented on a per 
crewmember per day basis. The water mass contained in waste is also presented in Table 4-46.  Each crew member 
produces a nominal average of 1.49 kg/CM-day at a moisture content of 41.9% when brine is not included. 

The data in the table is presented in a manner that facilitates understanding how waste production rates 
will vary in accordance with future WMS designs.  For example, the nominal crew-member production rates will 
increase from 1.49 to 1.90 kg/CM-day if wastewater brines are not further dried for both water recovery and 
volume reduction.  This significant increase, which is mostly water, points to serious consideration of drying 
wastewater brines. The waste mass will increase only slightly due to the inclusion of the brine solids obtained after 
drying (1.56 kg/CM-day).  

If a laundry system is utilized and clothes are not discarded, the waste production rate drops significantly.  
Because this mixture does not contain feces, laundry items or brines, it is likely akin to the waste fraction typically 
referred to as trash in past missions.  It should be noted that some clothes will eventually be discarded as they age 
beyond functional use.  A value of 0.0373 kg/CM-day can be used as a clothes attrition rate with a laundry system 
for a 180 day mission, and can replace the laundry values used in this spreadsheet if a clothes washing system is 
implemented. 
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The rate of feces production increases from 0.123 to 0.140 kg/CM-day by including a single diarrheal 
event per month.  Further definition is required to fully reflect the issues of fecal production rates, including the 
effect of high rates of EVA, which may increase food intake and concomitant feces generation.  

Another waste source that was revealed to be a significant source of water was the urine contained in the 
maximum absorbency garments (MAGs) used during EVA.  The model assumed that 33% of a crew-member’s 
total daily urine production was collected in the MAG per EVA event (EVA events were assumed to be of long 
duration, 7-8 hrs).  Although it is likely that the crew will take measures to empty their bladder prior to EVA, the 
EVA will be conducted for a long period, and a substantial amount of water will be consumed by the crew while 
inside the suit.  The 33% value represents approximately 0.515 kg/CM-day, which is a significant portion of the 
overall waste produced per day.  This is also the principal reason why the moisture contents presented in Table 
4.34 are substantially higher than previous waste model values.  This is an important issue when evaluating the 
potential for water recovery from wastes, as the MAGs would likely need to be stored in the lunar rovers and 
processed at the core habitat to recover that water.  The assumed rate of EVA used in this model (22.3 hrs EVA 
per day) is substantially higher than the value used in a previous analysis (7.3 hrs EVA per day, Lange, 2009).  
This value was the result of a lunar architecture study aimed at surface systems (R. Bagdigian, 2009).  One area 
that remains undefined and is not addressed in this model is the issue of packaging used for items other than food.  
There is the potential that consumable items may come individually wrapped in plastic, paper or in foam.  While 
paper and plastic (film) can readily be incorporated with most other wastes, the foam that often protects shipped 
hardware can be stiff and bulky. It must be decided where such wastes will be processed and/or stored.  They are 
unlikely to contain any significant water, so these types of additional wastes are unlikely to serve as a significant 
water source/sink, and the exclusion of them from this model will affect only the waste mass estimates as definition 
is required.  

4.3.5.3 FUTURE WASTE MODEL EFFORTS  

The 2010 lunar model effort focused on defining the major waste model needs for waste type, amount 
and water content.  In order to increase the utility of the model to serve more refined analyses, more data are 
required.  With regards to water content, the production of water via mineralization should be examined in addition 
to the potential to recover free water.  This entails understanding the elemental composition of the wastes, as well 
as their transformation during mineralization. 

In addition to total waste quantities produced, the potential patterns of generation (e.g., frequent vs. 
intermittent) also require examination.  For example, the waste generation will likely be very high for the initial 
phase of a mission when habitats and pressurized rovers are setup and packaging material to reduce launch or 
landing loads are removed.  Of particular interest is the potential for large amounts of stored waste to be returned 
from long lunar rover excursions.  This waste could present a processing challenge to WMS processors, 
particularly if all crew are away from the core habitat for extended periods.  Unless wastes can be processed 
autonomously in a continuous system, oversized processors would need to be developed in order to process wastes 
while the core habitat is manned.  This could significantly affect WMS operations.  Therefore, increased detail is 
required on the EVA schedule, including duration, number of events and the availability of crew to process wastes. 

Additionally, the issue of waste mixtures will need to be studied.  For example, certain wastes may be 
generated in combination and in particular proportions, and may strongly influence processing possibilities.  
Certain waste streams may therefore be addressed as mixtures rather than as individual components.  In addition, 
waste segregation can be examined with respect to its potential effect on general waste management and water 
recovery goals.  Segregation may be required to enable certain waste processing needs, such as potentially 
segregating dry wastes from wet wastes to decrease waste drying operations.  The potential for waste variability 
both during a mission and among mission types will also need to be assessed, as this can also influence the types 
of waste processors that can be utilized. 

Another effort that requires consideration is the need to develop and maintain a system that can track the 
“waste” materials generated by the various mission sub-systems.  This could be considered to be a “waste 
catalogue” that allows each sub-system to identify the materials/parts of that system to be discarded.  This could 
include nominal (predicted) process products and expendables.  The catalogue would best be maintained as a web-
based tool that allows real-time updating from authorized personnel from each of the relevant sub-systems.  This 
information would allow the waste sub-system to optimize their research and technology development program to 
best meet the needs of the mission. Additionally, this information would allow the WMS element to provide 
feedback to other sub-systems regarding certain problematic wastes. This provides an opportunity for material 
substitution to be investigated in a timely fashion. 
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From 2012-2017 Ewert and others developed an ‘exploration’ logistics and waste model for NASA’s 
Logistics Reduction and Repurposing project (Ewert, 2013; Broyan, 2014; Goodliff, 2017). This model predicted 
1.0 kg/CM-day of crew solid waste, including feces, but excluding brine, plus an additional 0.5 kg/CM-day of life 
support systems waste such as filters, waste tanks, etc. One waste item that was quite a bit lower than Hogan’s 
earlier estimates was clothing and towels. It is expected that future efforts on waste model development will occur 
as time and opportunity allow. 
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Table 4-46 Lunar Outpost Mission Waste Sources Design Values and Water Content 

Waste Components Nominal Design                           
Values 

Minimum 
Design Values 

Maximum 
Design Values Units 

Nominal 
Moisture       

Content       (%) 

Minimum 
Moisture       

Content       (%) 

Maximum 
Moisture       

Content       (%) 
Lunar Outpost Mission - Waste Sources Design Values and Water Content Food System Wastes: 

Food Packaging 262 236 288 g/CM-d 0.0 0 0 
Food Adhered to 

Packaging 62 59 68 g/CM-d 73.0 68 78 

Equipment Wastes:        

TBD 0 0 0 g/CM-d 0.0 0 0 

Experiment Wastes:        

TBD 0 0 0 g/CM-d 0.0 0 0 

Feminine Wastes:        

Menstrual Hygiene 
Products 3.7 3.3 4.1 g/CM-d 0 0 0 

Menses 1 0.8 5 g/CM-d 36 36 36 

Wastewater Recovery System Wastes: 
Hygiene Wastewater 

(no urine) 7,170 6,453 7,887 g/CM-d 99.8 99.5 99.9 

Humidity Condensate 2,270 2,043 2,497 g/CM-d 99.99 99.9 99.999 

Urine 1562 1390 2107 g/CM-d 96.2 95.7 96.7 
Solids in Brine After 

Processing 18 15 20 % Solids na na na 

Human Detritus: 

Finger and Toenails 0.01 0.01 0.01 g/CM-d 0 0 0 

Hair 0.33 0.30 0.36 g/CM-d 0 0 0 

Mucus 0.40 0.36 0.44 g/CM-d 95 95 95 

Saliva Solids 0.01 0.01 0.01 g/CM-d 0 0 0 

Skin Cells 3.00 2.70 3.30 g/CM-d 0 0 0 

Skin Oils 4.00 3.60 4.40 g/CM-d 0 0 0 

Sweat Solids 18.00 16.20 19.80 g/CM-d 0 0 0 

Hygiene Products:  

Miscellaneous 0.00 0.00 0.00 g/CM-d 0 0 0 

Biomass Production Wastes 
Inedible Biomass/ 

Waste Crop Materials 0.00 0.00 0.00 g/CM-d 0 0 0 

Laundry:        

Clothing, towels, 
washcloths 343 309 377 g/CM-d 8.5 8.5 15 

Medical Wastes:        

Miscellaneous 0.00 0.00 0.00 g/CM-d 0 0 0 
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Table 4-46 Lunar Outpost Mission Waste Sources Design Values and Water Content (cont)  

Waste Components Nominal Design                           
Values 

Minimum 
Design Values 

Maximum 
Design Values Units 

Nominal 
Moisture       

Content       (%) 

Minimum 
Moisture       

Content       (%) 

Maximum 
Moisture       

Content       (%) 
Lunar Outpost Mission - Waste Sources Design Values and Water Content 

Metabolic Wastes: 
Feces (nominal non-

diarrheal) 123.00 95.50 132.00 g/CM-d 74 69 79 

Diarrheal Feces 500.00 450.00 550.00 g/CM-event 93.6 92.8 94.2 

Vomitus 11.70 11.70 50.00 g/CM-d 80 70 90 

Urine 1,562 1,390 2,107 g/CM-d 96.2 95.7 96.7 
Extravehicular 

Activity: 
       

Extravehicular 
Activity MAG 173.00 173.00 173.00 g/ MAG 8.0 7.0 10.0 

Urine contained in 
MAG per EVA event 25 20 30 % of total daily 

urine production 96 96 96 

Feces contained in 
MAG per EVA event 5 2 10 % of total daily 

feces production 75 70 80 

Wipes:        

Toilet Paper (Clean 
and Dry) 6 5 28 g/CM-d 8.0 7.0 10.0 

Wipes, Detergent 58 52 64 g/CM-d 75 70 80 

Wipes Disinfectant 56 50 62 g/CM-d 75 70 80 

Wipes: Dry 13 12 14 g/CM-d 8 7 10 

Wipes, Wet 51 46 56 g/CM-d 75 70 80 

Miscellaneous:        

Gloves 7.00 7.00 14.00 g/CM-d 0.0 0.0 0.0 

Tape 33 0 40 g/CM-d 0 0 0 
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Table 4-46 Lunar Outpost Mission Waste Sources Design Values and Water Content (Results) 
Moisture Content 

(%) % Water (Nominal) % Water 
(Minimum) % Water (Maximum)  

Waste (no brine or 
brine solids) 41.9 38.9 49.2    

Waste (includes 
brine and brine 

solids) 
50.5 54.2 54.6    

Waste (includes 
brine solids) 39.9 36.2 47.2    

Waste (no 
brine/solids, laundry 

items) 
51.9 48.7 58.1    

Waste (no 
brine/solids, laundry 

items, feces) 
48.6 45.7 55.5    

Feces only (normal 
and diarrheal) 76.4 72.3 80.9    

Crew Production 
Rates kg/CM-D (Nominal) kg/CM-D 

(Minimum) kg/CM-D (Maximum)    

Waste (no brine or 
brine solids) 1.49 1.26 1.84    

Waste (includes 
brine and brine 

solids) 
1.90 1.89 2.23    

Waste (includes 
brine solids) 1.56 1.36 1.92    

Waste (no 
brine/solids, laundry 

items) 
1.15 0.95 1.46    

Waste (no 
brine/solids, laundry 

items, feces) 
1.01 0.85 1.32     

Feces only (normal 
and diarrheal) 0.14 0.11 0.15     

Wastewater Brine 
(urine, humidity 
cond., hygiene) 

0.41 0.39 0.63     
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Table 4-47 Estimated Stoichiometric Model of Useful Waste Products 

Waste Processing Stoichiometry 
 

 
Theoretical 
Products, 
kg/CM d 

H2O, 
kg/CM-d 

CH4 
kg/(CM-d) 

feces Volk (1987) C42H69O13N5 0.123 0.09  

food pkg, kg/CM*d 

polyethylene, 
polystyrene, 

polypropylene (equal 
3rds) 

CnH2n 0.220  0.13 

plus adhered food 

50% CHO(glucose), 
27.5% fat(squalene), 

22.5% 
Protein(isoleucine) 

C6H12O6, 
C5H9O2, 

C6H15O2N2 
0.098 0.07  

uneaten food 

50% CHO(glucose), 
27.5% fat(squalene), 

22.5% 
Protein(isoleucine) 

C6H12O6, 
C5H9O2, 

C6H15O2N2 
0.249 0.21  

MAGS, kg/CM d 

Wikipedia, 520 1/2 
day Sorties per year 

allowed so: 
520/365=0.7 EVA/day 

allowed 

CH2-
CH(COONa) 0.173 0.058  

Gray Tape, 
kg/CM*d 

80% polyethylene 
polymer + 20% 

butadiene polymer 
C2H4+C5H10 0.033  0.14 

Paper 

Cellulose (glucose 
polymer); wood fiber 

(analysis the 
components showed 

glucose (65.8%), 
xylose (19.8%), 

galactose (12.5%) and 
mannose (1.3%)) 

C6H12O6, 
C5H10O5 0.105 0.08  

Towels & 
Washcloths cotton(95% cellulose) C6H12O6 

if “x” is the 
mass sent to 

waste 
0.09x  

Clothing 
With 

polybenzimidazole 
fire retardant 

C11H15N2 
“x” is the 

mass sent to 
waste 

 0.37x 
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 HABITATION INTERFACE 

Habitation functions are diverse and cross many systems, including environmental control & life support, 
crew health & safety, and logistics.  There are many potential definitions of habitability depending on the vehicle 
level assumed.  At the highest vehicle level, habitation consists of the entire crew module including the pressure 
shell structure, Environmental Control and Life Support Systems (ECLSS), power/avionics systems, human 
systems architecture, and crew health/medical equipment. At the lower vehicle levels, habitation consists of 
discrete hardware systems ranging from tools and crew quarters structures to specific human factors requirements.  
For purposes of this section, Habitability is defined as crew hardware and logistics required to utilize vehicle 
systems and to maintain crew productivity. It does not include primary vehicle structure (the habitat), ECLSS, or 
medical equipment.  Habitation areas that do not impact ECLSS (i.e., autonomous logistics management, quiet 
acoustic interiors, logistics packaging, crew structures) are generally not discussed in this document. 

Habitation systems are needed for (1) future crewed weightless transits, (2) reduced gravity planetary 
Lunar or Martian surfaces, and (3) long duration, deep-space environments.  Logistics required to support humans 
are generally proportional to the duration of the space mission and may amount to 3.7 kg/CM-day (Ewert, 2013). 
Exploration missions away from low-Earth orbit greatly limit allowable consumables and require development of 
innovative low maintenance, re-configurable, and reusable systems.  Minimal volume configurations (or dual use) 
during non-use mission phases are highly desirable. 

4.4.1 CLOTHING SYSTEMS 
Clothes have not traditionally been part of an environmental control and life support system.  However, 

the data here detail some of the many interfaces between crew clothing, overall crew support mass, and the Water 
and Waste Subsystems.  The approach for ISS is to resupply disposable clothes as needed.  Alternately, clothes 
could be cleaned and reused to significantly reduce the mass of clothes allotted per mission. 

The main interfaces between other life support subsystems and a traditional laundry would be the mass 
of water to support an aqueous washer and the corresponding water vapor load.  The water vapor load would 
depend on the performance of the laundry system, but assuming that most of the wash water is removed 
mechanically, leaving a mass of water within the fabric equal to the mass of the clothes. Table 4-48 provides a 
summary of clothing and laundry options.  Table 4-49 provides details of another study; the authors assumed 
clothing would have a useful life of 100 laundry cycles (Jeng and Ewert, 2015). Table 4-50 and Table 4-51 provide 
additional summary information on space laundry trade off studies. 

Equations 4.2-4.4 below are calculations using the formula developed by the Habitation team, (Villarreal, 
2006), which contains variable amount of clothing based on the length of mission and a constant amount per crew 
member. 

 

kgCMd
dCM

kg
CM
kg 1.4841.213323.099.4 =+×














 ×

−
+






  Equation 4-2  Clothing Needed for CEV Mission 
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Equation 4-3  Clothing needed for a LL Mission 
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Equation 4-4  Clothing Needed for LO Mission 
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Table 4-48 Clothing and Laundry Options 

 
Mass 
[kg] 

Mass 
[kg/CM-d] 

Volume 
[m3/CM-d] 

Power 
[kW] References 

ISS Approach (clothes shipped, single use): (1) Chaput (2003).  Based on 
clothing allocation “as 
planned” for ISS 

(2) JCPC (1999).  Based on 
clothing “as planned” for 
ISS. 

(3) Branch (1998) 
(4) Reimers and McDonald 

(1992) 
(5) NASA (1990) 
(6) Jeng and Ewert (2002) 
(6a) Jeng and Ewert (2002); 

90 d mission duration 
(6b) Jeng and Ewert (2002); 

180 d mission duration 
(6c) Jeng and Ewert (2002); 

600 d mission duration 
(7) Ewert & Jeng (2015) for 

ISS type mission 

From Chaput (2003)  0.343 (1) 111   
From JCPC (1999)  0.718 (2) 0.0013 (2)  
From Branch (1998)  1.69 (3) 0.00135 (3)  
From Reimers and 
McDonald (1992)  1.47 (4) 0.00140 (4)  

From Jeng and 
Ewert (2015)  0.206(7) 0.0058(7)  

  0.21 (7) 0.0010 (7)  
Using a Laundry:     

Clothes 

 0.267 (4) 0.000351 (4)  
 0.0746 (6a) 0.00044 (6a)  
 0.0373 (6b) 0.00022 (6b)  
 0.0191 (6c) 0.00011 (6c)  
 0.022   (7) 0.00010 (7)  

Laundry 
Equipment 

118 (4)   0.31 (4) 
80 (6)   0.751 (6) 

    

Interfaces (Water) 
 12.47 (5) 112   
 7.33 (6)   

      

Table 4-49 Simple Microgravity Laundry Properties 

Washer Unit Value Units Comments References 
Mass 14 kg  Jeng and Ewert (2015)  

 
 

Volume 0.136 m³  
Clothing Capacity 1.5 kg/load  

Water Usage 51 kg/load  
Power 90 W  

Crewtime 2.4 CM-h/week Load, remove, fold, and stow 
clothes. 

Energy 3.3 kWh/load  
Consumables 0.0024 kg/load Detergent 

                                                           
111 Chaput (2003) gives ISS planning values for clothing of 10.3 kg per crewmember per 30 days. 
112 The laundry uses clean water and provides a waste stream of greywater to the water recovery system. 



Life Support Baseline Values and Assumptions Document, NASA/TP-2015-218570, Rev1 January 2018 

 

 114  

 

 

Table 4-50  Recent Laundry Break-Even Studies and Their Major Parameters 

Symbols a and b relate the supply rate with the breakeven time 

Table 4-51 Advanced Washer/Dryer Specifications 

Washer Unit Value Units Comments Reference 
Mass 80 kg  From Jeng and 

Ewert (2002) Volume 0.18 m³  
Capacity 4.5 kg/load Clothes 

Water Usage 51.3 
115 kg/load Effluent is greywater.  This unit does 

not release water vapor. 
Crewtime 0.42 CM-h/load Load, remove, fold, and stow clothes. 

Energy 0.95 
116 kWh/load Low setting 

Consumables 0.010 kg/load Detergent  

                                                           
113  The data cited here was calculated using the assumptions of 4 clothes washes per week, and one towel washed per 

week. 
114 Actual ISS clothes supply average among missions EXP 9 and EXP 13 
115 A washer using ozone, O3, for the detergent will use less water.  Energy usage, however, increases to support ozone 

production. 
116 Corresponding energy usage values: The washer cycle is 40 minutes at 300 W, and the dryer cycle is 60 minutes at 

750 W. 

Study Missions Crew Author 

Clothing 
Supply 
Rate, 
kg/CM -
day 

WRS 
Technologies 
used in the 
study 

Break-
Even 
Time, days 

Report 
Year 

“Lunar 
Outpost  Technologies 
Break- Even Study” 

Lunar 
Outpost 4 Perka A 0.486 

VPCAR 
w/out AES 
PMWC-
Lyoph 
Storage 

144 - 851 2007 

“Clothing for 
Lunar  Outpost” 

Lunar 
Outpost 4 Drysdale 

A. 0.625 
Closed water 
processing 
system 

24 - 81 2006 

“Trade Study 
on  Laundry Systems 
for  Advanced and 
ISS  Missions” 

Mars 6 
Jeng F., 

and 
Ewert M. 

0.486 

Biological 
Water 
Recovery 
System. 
 

145 - 290 2002 

“Laundry Study 
for  Constellation”113 

Lunar 
Outpost 
or Mars 

4 Jeng F. 
0.382 a  

114 
0.500 b 

VPCAR 
w/out AES 

240 a 
180 b 2008 

“Will Astronauts Wash 
Clothes on the Way to 
Mars?” 
 

Mars 
 
 

4 
 
 

Ewert M. 
and Jeng 

F. 
 

0.206 
 
 
 

ISS 
 
 

770 
(440 w/ 

other 
items) 

2015 
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4.4.2 STOWAGE SYSTEMS 
Interior/exterior stowage systems are required that maximize usable volume and include contents 

identification and inventory control systems.  Long-term external stowage for biological or other wastes on a 
planetary surface that is safe and consistent with planetary protection policies will be needed.  One example of a 
planned stowage system is the EVA and Crew Survival System currently planned for Orion (Table 4-52). 

 
 

Table 4-52 Estimates of Mass and Volume for Stowed EVA Suits and Emergency Suits  

System Subsystem 

Unit 
Volume, 

m3 Length, m 

Width, 

m Height, m 
Unit 

Mass, kg 

Stowed 
Volume (4 
CM) m3 Mass, kg 

EVA& 
CREW 

SURVIVAL 

Pressure 
Suits&Equipment 

for Launch 
0.188 0.575 0.574 0.574 37.3 0.750 149.1 

 Suits&Equipment 
for Post Landing 0.004 0.160 0.160 0.160 1.81 0.016 7.21 

 Emergency O2 0.495 0.457 0.178 0.040 4.54 0.209 18.1 

 
Umbilicals 

(5 CM) 
0.025 3.050 0.090 0.090 6.35 0.124 31.8 
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4.4.3 WARDROOM SYSTEMS 
Wardroom Systems are erectable or inflatable systems that support crew dining, conference, external 

viewing (windows), illumination, and relaxation activities. This includes off-nominal events, such as emergency 
medical or equipment repair. The Wardroom system typically does not have an ECLSS interface.  However, some 
crew functions such as eating, emergency medical, or repair activities may require functions to capture particulate 
or liquid material. 

4.4.4 CREW HYGIENE SYSTEMS 
Crew Hygiene Systems are low maintenance/self-cleaning fecal, urine, menstrual, emesis, hand/body 

wash, and grooming systems.  Specific areas include non-foaming separators and no-rinse/non-alcohol hygiene 
products.  On ISS full body hygiene is conducted by dispensing a small amount of water into a wash cloth and 
taking a sponge bath.  The wash cloth and towel are allowed to air dry to recover water via the air system 
condensing heat exchanger.  No dedicated area is defined for drying hygiene items and it has resulted in periodic 
surface mold growth on ISS.  Future areas should incorporate a dedicated drying area with antimicrobial 
treatments.  Long term missions should improve full body hygiene. 

Toilet systems should consider air, liquid, vacuum, and low-gravity transport methods.  Collected waste 
should be prepared for recovery or long-term stabilization.  Urine pretreatment systems may be part of the toilet 
hardware system but their development is part of the water recovery system.  Integrated hygiene systems should 
provide, acoustic and odor isolated private crew volumes compatible with multi-gravity interfaces. 

4.4.5 CREW ACCOMMODATION SYSTEMS 
Habitation systems should consider the following general crew accommodation system functions: : re-configurable 
crew volumes), multi-use work stations, crew radiation exposure mitigation, physically and psychologically 
ergonomic personal volumes, automated deployment, quiescent operations between missions, multi-purpose 
stowage systems for, and automated housekeeping/self-repairing habitat surfaces.   
ISS currently has dedicated crew quarter (CQ) volumes with ~250lbs of integrated radiation shielding material.  
For exploration, minimal mass deployable crew quarters that can utilize logistics and processed waste for radiation 
shielding are desired.  Approximately 5% of ISS CQ mass and ~15% of ISS CQ volume was dedicated to acoustic 
mitigation.  For exploration, low mass and volume acoustic mitigation using active noise cancellation of ventilation 
ducts and open cabin environments are potential approaches.  Active quiet fan development will also reduce the 
need for both passive and active noise mitigation. 

4.4.6 GALLEY SYSTEMS 
Galley systems are systems requiring minimal crew preparation (heating, cooling, and rehydration) for 

food heating and accurate water dispensing.  Specific areas include systems that allow individual crew meal 
flexibility and high-energy efficiency.  Conductive heating of food is typically used because of its low average 
power and ability to minimize hot spots in foods that may have variable water content (dehydrated foods to which 
water has been added).  A forced convective oven may offer reduced heating times when combined with a 
conductive heating element. Although microwave ovens are typically faster for terrestrial applications the 
variability of rehydrated food moisture and the use of metallic foil food packaging to help limit oxygen diffusion 
into the food (which shortens shelf life), generally prevents the use of microwaves in space flight. 

The rehydration system is generally one of the distribution points of the water processing system.  The 
rehydration system requires protection of back contamination of food and microorganisms that may develop from 
the food/rehydration system interface.  On ISS the food package septum and rehydration system needle leaked 
water due to crew manipulation of the food package and resulted in fouling and eventual replacement of the food 
hydration interface.  The rehydration system also requires long life point-of-use microbial filters to protect the 
water processor.  The rehydration system may also require removal of the water processor biocide if the crew 
cannot tolerate consumption for long periods of time (e.g. ISS iodine/iodide biocide must be removed by ion 
exchange (I/X) prior to rehydrating food).    

4.4.7 HABITAT LIGHT OUTPUT AND DISTRIBUTION 
ISS originally was outfitted with primarily florescent lighting which typically required small amounts of 

mercury within the glass tubes.  The glass tubes of florescent lighting needed to be protected to contain glass 
particles in the event the tubes were inadvertently broken.  During the last 10 years the efficiency of florescent 
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lights has been matched and exceeded by light emitting diode (LED) based lighting and is an inherently directional 
light offering better control than sources like incandescent, fluorescent, or metal halide lamps.  In addition, LEDs 
are solid state devices that contain no mercury and have a long operating life, up to five times that of arc discharge 
lamps (Bourget, 2008).  If properly designed to direct light where it is needed, LED fixtures can provide efficient, 
uniform lighting at the desired illumination for space habitats and vehicles (Roberts, 2008; Bourget, 2008; Shultz 
2009).  LED technology is envisioned to be the primary technology for future vehicles.  In general, commercial 
industry will drive the technology and only require adaption of thermal dissipation from LED technology for 
microgravity space applications.  LED operating temperature must be controlled to prevent excessive heating from 
decreasing their high light output efficiency and long life.  There is medical research in the area of multispectral 
lighting to control circadian rhythm and improve sleep.  These may be useful in future long duration missions, 
especially if more than one crew shift is required. 

 FOOD INTERFACE 

Food, though historically omitted from life support analysis, has significant impacts on closure and the 
cost of crew support.  In particular, food, if grown on-site, can regenerate some or all of the crew’s air and water.  
If more than about 25% of the food, by dry mass, is produced locally, all the required water can be regenerated by 
the same process.  If approximately 50% or more of the food, by dry mass, is produced on site, all the required air 
can be regenerated by the same process (Drysdale, et al., 1997).  The former value depends on the crop and growth 
conditions.  The latter number, however, depends on the cropping scenario and the overall harvest index. 

4.5.1 PHYSICAL PARAMETERS FOR HISTORICAL FOOD FLIGHT SYSTEMS 
The crew food energy requirement will depend on the crew themselves, their lean body mass in particular, 

and the amount of physical work they perform.  Extravehicular activity (EVA), for example, requires additional 
food energy compared with crews conducting only intravehicular activities (IVA) because more physical work is 
typically associated with an EVA.  Unless specified otherwise, this document assumes an average body mass of 
82 kg, and an intravehicular metabolic requirement of 12.99 MJ/CM-d, which are consistent with ELS RD (2008) 
and derived from NASA (1991). 

The mass of food required depends heavily on the lipid content and the degree of hydration.  A 30 % lipid 
content, by metabolic energy, is generally recommended though much lower levels of lipids have been suggested 
by some sources.  Degree of hydration is largely a function of the type of food, and the method of processing and 
storage.  Fresh foods can have as much as 99 % water content, by mass, while dehydrated foods have as little as 
3 % moisture. 

Food quality is not specifically discussed here, because this topic is addressed when the Food Subsystem 
is designed.  However, food quality can have a tremendous impact on crew morale and the success of a long-
duration mission.  The mass of food also depends on food quality. Digestibility will also vary, being lowest for 
vegetarian diets.  As noted above, these factors are currently beyond the scope of this discussion. 

Besides the mass of food itself, food requires packaging and/or appropriate containment to protect it from 
degradation and contamination.  Packaging includes wrapping and/or boxes around the food itself, such as for 
individual servings.  The material of the packaging is a strongly driven by the requirement to minimize oxygen 
permeation from the atmosphere.  Oxygen will generally react with food and cause spoilage and reduced shelf life.  
Currently the ISS type food packaging only provides a shelf life of 1.5 to 3 years, product/process/package 
dependent for most food items.  NASA’s Human Research Program recognizes this as a risk for exploration but 
to date there has been limited development of new materials.  Appropriate containment describes stowage, such 
as food lockers, provision of a suitable atmosphere, temperature, and other environmental conditions, such as 
freezers for some foods, and secondary structure to house the stowage and environmentally conditioned chambers.  
Section 3.2.4 provides estimates for supporting secondary structure with the Food Subsystem.  Analysis indicates 
that an additional ~17 % mass penalty, based on fresh food mass, is appropriate for individually packaged meals.  
Note that the values presented in Table 4-53 are historical or predicted averages for the indicated programs and, 
therefore, may or may not provide the current requirements for metabolic energy. 
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Table 4-53   Historical and Near-Term Food Subsystem Masses 

Parameter 
Mass 

[kg/CM-d] 
Volume 

[m³/CM-d] Comments 

Water 
Content 

[%] References 
IVA Food, dw 0.67 (1)  A Reference Value 0 (1)  

(1) MSIS (1995), Section 
7.2.2.2.3 

(2) Levri (2002) 
(3) Perchonok, et al. 

(2002) 
(4)  Grace Douglas 

personal 
communication 
(2017) 

 

Space Transportation Food System   
STS Food 117 0.66 (2)  Food Dehydrated, 

11.82 MJ/CM-d 0 (2) 

 1.147 (2)  
Food As-Shipped, 
No Packaging, 
11.82 MJ/CM-d 

42 (2) 

 0.26 (2)  Packaging Alone (clean)  

 0.35 (2)  
Container Mass 
(ISS “Pantry-style storage”) 
without secondary structure  

 

 1.76 (2) 0.0048 (2) 
Food As-Shipped, Packaged 
(ISS “Pantry-style storage”), 
and within a Container 

42 (2) 

International Space Station Food Systems  
ISS 1.83 (3) – 

2.39 (4) 
0.00472(3) - 
0.006304(4) Food As-Shipped, Packaged  

Table 4-54 A 10-Day Menu for Short-Term Missions 

Mission Day Mass, kg Energy, MJ 
Rehydration 

Water, liters (l) 
1 1.60 12.41 2.99 
2 1.68 13.01 2.67 
3 1.45 12.41 2.45 
4 1.26 12.33 2.67 
5 2.04 13.27 2.31 
6 1.38 12.37 2.81 
7 1.82 13.21 2.16 
8 1.16 11.97 2.70 
9 1.23 12.36 2.52 
10 1.68 12.53 2.72 

For a food system based on the Shuttle Training Menu, as detailed above, Levri (2002) lists the properties 
of the rehydration apparatus and conduction oven collectively as 36.3 kg occupying 0.094 m³ based on the Shuttle 
galley.  During use, the rehydration apparatus consumes up to 0.540 kW to heat water.  The conduction oven, 
when operational, consumes up to 0.360 kW for heaters and 0.060 kW for fans.  Thus, the maximum total power 
load for the galley is 0.960 kW during operation. 

                                                           
117 Space Transportation System (STS) food systems are provided for reference only.  They do not meet nutritional 

requirements for long-duration space flight.  (For example, while this diet meets all minimum nutritional requirements, 
it exceeds the limit for sodium and iron for a weightless diet.)  These food systems do not use any refrigeration. 
Historically, in a personal communication with C. Bourland (May 25, 1999) he reported an empty locker for food 
aboard Shuttle has a mass of 6.4 kg.  Filled, this locker holds up to 42 individual meals (Perchonok, et al., 2002).  The 
overall locker mass, when filled, is 24.5 kg (personal communication with C. Bourland (May 25, 1999)).  This is 
equivalent to 0.583 kg/meal, or 1.75 kg/CM-d.  The Shuttle food system is shelf-stable without any frozen components.  
Note that assessments from Levri (2002) assume ISS “Pantry-style storage” and not Shuttle lockers. 
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Perchonok, et al. (2002) reports that a loaded ISS food container for Phase II averages 5.5 kg each and contains 
nine meals plus snacks.  This is equivalent to a single day’s food for three ISS crewmembers.  This is equivalent, 
on average, to 0.611 kg/meal, assuming snacks are extensions of the standard meals, or 1.83 kg/CM-d.  
Individual food container masses vary according to individual crew entrée preferences and nutritional 
requirements, and the containers themselves are placed in racks, incurring a secondary structure penalty not 
included in the masses above.  These contents did not equate to the current 3000 kcal per day requirement. It 
should also be noted that crews will choose what they want from these options, and this does result in some food 
waste. Over time the amount of food used on ISS has increased and the higher values of 2.39 kg/CM-d and 
0.006304 m3/CM-d in Table 4-53 are based on the maximum 6-month rate of food bags opened. 

 (Cooper, 2011) and (Cooper, 2012) discuss exploration food systems, including those which contain a 
bio-regenerative component. 

4.5.2 PHYSICAL PARAMETERS OF REFRIGERATION EQUIPMENT 
Table 4-55 presents characteristics for the ISS refrigerator/freezer technology.  These units were 

designed, but the ISS Program decided not to launch them or the planned frozen food system.  The internal volume 
and internal load apply to the internal refrigerator or freezer cargo capacity within a single unit assigned to a single 
rack, while the other parameters generally describe the exterior properties of the overall unit. ISS later added a 
small refrigerator for the crew. 

Each previously mentioned ISS refrigerator/freezer was designed to fit within one ISS rack and had four 
cold volume compartments, each with a dedicated thermoelectric thermal control system.  The refrigerator/freezer 
could operate in one of three modes, depending on the thermostat settings for the internal compartments.  In the 
freezer mode all four compartments operate as freezers, in the refrigerator mode all four compartments operate as 
refrigerators, and in the refrigerator/freezer mode two compartments operate as refrigerators while the other two 
compartments operate as freezers.  The overall system thermodynamic coefficient of performance (COPS) for the 
ISS refrigerator/freezer in freezer mode is 0.36 (Ewert, 2002a).  Waste heat is rejected to the internal thermal 
control loops.  The unit was designed to have an operational lifetime of 10 years, with servicing provided on the 
ground once a year. 

Table 4-55 International Space Station Refrigerator / Freezer Properties 

 Units 
Freezer 
Mode 

Refrigerator 
/ Freezer 

Mode References 
Unit Mass kg 321.0 (1) 321.0 (1) (1) Toups, et al. (2001) 

(2) Personal 
communication 
with C. Shepherd 
in 2001 

(3) Vonau (2002) 
(4) Winter, et al. 

(2001) 

Secondary Structure Mass kg 91 (2) 91 (2) 
Volume, Including Rack m³ 2.00 (3) 2.00 (3) 
Volume, Without Rack m³ 1.16 (3) 1.16 (3) 
Power kW 0.268 (4) 0.205 (4) 
Thermal Control kW 0.297 (4) 0.228 (4) 
Crewtime CM-h/y 0 (1) 0 (1) 
Logistics kg/y 321.0 (1) 321.0 (1) 
Internal Load kg 295 (1) 295 (1) 
Internal Volume m³ 0.614 (1) 0.614 (1) 118 

More generally, Table 4-56 lists properties for frozen food storage per frozen-food-mass (ffm) basis.  The 
nominal and low values reflect advanced or anticipated technologies, while the high values are based on ISS 
technology.  Vapor compression and Stirling refrigeration technologies are more efficient, generally exhibiting 
higher COPS values than thermoelectric approaches.  However, these advanced technologies are at low technology 
readiness and require further development to meet space flight requirements, especially with respect to 
weightlessness and acoustics (Ewert, 2002a). 
                                                           
118 In refrigerator / freezer mode, half of the internal cold volume is a refrigerator while the other half is a freezer. 
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As described in Ewert (2002b) and presented in Equation 4-5, the specific power consumption for a 

cooled volume within a cabinet, RFŴ  [kW/kg ffm], may be expressed as an empirical function of two system-level 
values, the composite thermal resistance, RS [m²•K/kW], and COPS [kW electrical/kW thermal].  RS characterizes the 
overall resistance to heat transfer to or from a cooled volume, such as a refrigerator or freezer, through the cabinet 
wall accounting for insulation, door seals, and any other pathways for heat transfer.  COPS is the system-level 
coefficient of performance defined as the net heat removed from the cooled volume divided by the total electrical 
power consumed by the refrigerator or freezer unit including the heat pump cycle and all supporting equipment.  
The assumed frozen food density within the cooled volume, including packaging and gaps, is 480 kg/m³.  The 
current ISS-based volume is larger than the data used for this calculation which will drive the density lower.  The 
assumed air temperature within the cooled volume is − 22 °C, while the ambient external cabin temperature is 
23 °C. 

















=

SS
RF COP

1
R
1028.1Ŵ  

Equation 4-5 

Table 4-56    Frozen Food Storage on a Property per Frozen-Food-Mass Basis 

  Assumptions  

Characteristic Units low nominal high References 

1/COPS 
thermal

electrical

kW
kW  0.5 (1) 1.0 (1) 9.2 (1) 

(1) Personal 
Communication 
with M. Ewert in 
2002 

(2) Toups, et al. (2001) 
(3) Rodriguez and 

England (1998) 
(4) Vonau (2002) 

1/RS kW/m²•K × 10 −3 0.28 (1) 0.32 (1) 0.32 (1) 

Mass 119 
kg  220 (4) 321 (2) 

kg/kg ffm  0.75 1.09 

External Volume, 
Including Rack 

m³  TBD 2.00 (3) 
m³/kg ffm × 10 −3   6.78 

External Volume, 
Excluding Rack 

m³  1.16 (4)  
m³/kg ffm × 10 −3  3.93  

Power 
kW 0.048 (1) 0.096 (1) 0.268 (1) 

kW/kg ffm × 10 −3 0.16 0.33 0.91 

Thermal Control 
kW 0.053 (1) 0.106 (1) 0.297 (1) 

kW/kg ffm × 10 −3 0.18 0.36 1.01 

Crewtime 
CM-h/y 0.0 0.0 0.0 

CM-h/(y•kg ffm) 0.0 0.0 0.0 

Logistics 
kg/y 0.0 0.0 321 (2) 

kg/(y•kg ffm) 0.0 0.0 1.09 

4.5.3 CREWTIME FOR THE FOOD SUBSYSTEM 
Overall crewtime requirements in the galley depend on the form in which food is shipped and its 

preparation requirements.  Crewtime required for food preparation during Space Transportation System (STS, or 
Shuttle) missions was 45 – 90 minutes per day for a crew of up to six (NASA, 1996).  This approach uses 
individually packaged servings.  If food preparation requires more than heating and/or re-hydration, then the 
additional preparation complexity increases crewtime for preparation compared with current systems.  However, 
more involved preparation may allow for higher quality food. 

Personal communication with J. Hunter in 1999 provides another estimate of crewtime for food 
preparation.  Hunter’s model assumes that each crewmember eats ten different food dishes per day.  For a crew of 
six, each dish prepared using ingredients provided by bioregenerative methods requires 15 to 45 minutes each, 
                                                           
119 Including the freezer mass and rack but excluding the secondary structure. 
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while each dish taken from resupplied stocks requires an average of 6 minutes to prepare based on NASA (1996).  
Assuming meals prepared using bioregenerative methods each require 30 minutes, on average, to prepare, a diet 
based on crops grown on-site would require 5.0 CM-h/d, or 0.83 CM-h/CM-d, assuming a crew of six.  Daily 
meals prepared completely from resupplied foods would require 1.0 CM-h/d, or 0.17 CM-h/CM-d.  Assuming five 
dishes are prepared from crops grown on site and five dishes are prepared from resupplied stocks, daily meal 
preparation time would be 3.0 CM-h/d or 0.50 CM-h/CM-d. 

Kloeris, et al. (1998) report meal preparation time during the Lunar Mars Life Support Test Program 
(LMLSTP) Phase III test while using the 10-day BIO-Plex menu averaged 4.6 CM-h/d. 

There will also be crewtime requirements to process the crops into edible food ingredients.  These times, 
though expected to be significant, have not been estimated to date. 

4.5.4 FOOD SUBSYSTEM WASTE GENERATION 
Wastage will depend on the type of food and the type of preparation, but can be quite large.  For example, 

during the 10-day BIO-Plex menu test conducted during the LMLSTP Phase III, total waste, including preparation, 
plate waste, and unused, leftover food, was 42% (Kloeris, et al., 1998).  Typically much lower values are assumed 
for prepackaged food systems.  Wastage occurs both due to food adhering to packaging and due to plate wastage.  
Waste model values are noted below and in Section Table 4-43 for both historical pre-packaged food systems and 
projected food systems based on crops from bioregenerative life support systems. 
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4.5.5 OVERALL FOOD SUBSYSTEM PARAMETERS 
Typical values from the literature for food-related masses are shown in Table 4-57.  However, the food 

mass values here do not reflect as great a range as is associated with the metabolic gas exchange values in Table 4-1 
and do not take into account recent updates in Table 4-53.  The listed food masses in Table 4-57 are “as shipped” 
and before addition of any hydration fluid and reflect historical pre-packaged food systems, although the upper 
value for crewtime is associated with a Food Subsystem using crop products derived from a biomass production 
chamber. 

Table 4-57   Food Quantity and Packaging 

  Assumptions  
Parameter Units lower nominal upper References 
IVA Food, dry mass 120 kg/CM-d 0.54 (8) 0.617 (1) 0.66(TBR)(2) (1) NASA (1991) 

(2) Levri (2002) 
(3) Personal 

communication 
with M. Perchonok 
in 2001 and NASA 
(1991) 

(4) Derived from 
McBarron, et al. 
(1993); metabolic 
rate of 293 W/CM 
and a respiratory 
quotient of 0.9. 

(5) Personal 
communication with 
M. Rouen in 2001 

(6) NASA (1996) 
(7) Kloeris, et al. (1998) 
(8) ELS RD (1998) 

IVA Human Metabolic 
Water Production kg/CM-d  0.345 (1)  

IVA Energy MJ/CM-d  11.82 (1)  
IVA Potable Water 
Consumption kg/CM-d  3.909 (3)  

EVA Food, dry mass, 
added 121 kg/CM-h  + 0.029 (4)  

EVA Metabolic Water 
Production added 121 kg/CM-h  + 0.016 (4)  

EVA Energy added 121 MJ/CM-h  + 0.570 (5)  
EVA Potable Water 
Consumption kg/CM-h   0.24 (1) 

Packaging 122 kg/kg food  + 16.5 %  
Crewtime CM-h/d 1 – 1.5 (6) 1.5 (6) 4.6+ (7) 123 

4.5.6 FOOD SUBSYSTEM BASED ON BULK PACKAGING 124 
French and Perchonok (2006) recently developed a 10-day menu using a bulk commodity supply 

approach that may serve as a basis for estimates for supplying food via such an approach.  Specifically, this 
approach endeavors to reduce packing mass and storage volume by packing food commodities in bulk.  This 
benefit is offset by increasing crewtime to prepare meals and adding some additional food processing equipment 
to enable more complicated food preparation processes.  This approach also increases overall menu shelf-life by 
storing food commodities in a form that is inherently more stable, thus assuring better food quality for longer-
duration missions.  Finally, because some commodities cannot be successfully stored in any form, this approach 
assumes a biomass production facility to provide salad crops, white potatoes, and sweet potatoes.  The initial study 
assumed a 600-day surface mission on Mars, but the format presented below should be applicable to missions of 
any duration with the most direct benefit derived from those of longer durations.  The presentation here is, by 
necessity, abbreviated and interested readers should consult French and Perchonok (2006) for additional 
information. 

                                                           
120 On a dry mass (dw) basis. 
121 EVA requirements are in addition to any IVA requirements. 
122 Source: 2014 Logistics Reduction model v.2.5. Packaging accounts for individual food packages only.  Secondary 

structure, lockers, and trays are additional. 
123 This value is derived using “ready to use” ingredients and includes no crop processing to develop ingredients.  An 

estimate including crop processing to develop ingredients might be double this value, or ~9 CM-h/d, or more. 
124 Unless noted otherwise, all material in this section is derived from French and Perchonok (2006). 
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4.5.6.1 COMMODITIES 

Table 4-58 provides a listing on the ingredients for the 10-day, bulk-commodity menu on a per-
crewmember, per-day basis.  The “daily menu ingredient mass” is the ingredient mass required by the menu 
recipes.  The list containing “nominal unprocessed ingredient mass” also contains the expected ingredient input 
prior to processing assuming the “nominal yield”, to produce the “daily ingredient mass.”  When the yield varied, 
French and Perchonok (2006) also provided different minimum and maximum yield values.  More precisely, these 
values are a specific volume of 1.33 × 10 - 3 m3/kg for dry beans, peanuts, rice, soybean, wheat, and liquid resupply 
items.  Specific volume factors of 1.78 × 10 - 3, 7.69 × 10 - 3, and 7.3 × 10 – 4 m3/kg are used for powder, leafy, and 
granule resupply items, respectively, while a specific volume factor of 2.5 × 10 – 3 m3/kg is used for resupply pasta 
items.  Because some ingredients, denoted as salad, sweet potato, or white potato inputs in the “source” column, 
are derived from a limited biomass production facility, the corresponding volume is not listed implying that these 
ingredients are used shortly after harvest and occupy no appreciable storage volume beyond that associated with 
the biomass production facility.  Volume for “water” is also omitted because this commodity is drawn from the 
life support system stores as needed. 
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Table 4-58 Ingredients, Commodity Sources, and Yield Values on a Per-Crewmember Per-Day Basis for 10-Day, Bulk-Commodity Menu 

 

Ingredient Source 

Daily 
Menu 

Ingredient 
Mass 

[g/CM-d] 
Minimum 

Yield 
Nominal 

Yield 
Maximum 

Yield 

Nominal 
Unprocessed 
Ingredient 

Mass 
[g/CM-d] 

Specific 
Volume 
Factor 
[m³/kg] 

Nominal 
Unprocessed 
Ingredient 

Volume 
[m³/CM-d] 

allspice resupply 0.015 100% 100% 100% 0.015 0.00178 2.670 × 10 - 8 
baking powder resupply 1.108 100% 100% 100% 1.108 0.00178 1.973 × 10 - 6 
baking soda resupply 0.020 100% 100% 100% 0.020 0.00178 3.560 × 10 - 8 
basil, dried/leaves resupply 0.363 100% 100% 100% 0.363 0.00769 2.794 × 10 - 6 
bay leaf, dried resupply 0.007 100% 100% 100% 0.007 0.00769 5.127 × 10 - 8 
bell pepper, whole salad 21.500 40% 45% 50% 47.778 n/a n/a 
black beans, uncooked dry bean 9.540 100% 100% 100% 9.540 0.00133 1.269 × 10 - 5 
black pepper resupply 0.249 100% 100% 100% 0.249 0.00178 4.440 × 10 - 7 
bouillon cube, beef resupply 0.600 100% 100% 100% 0.600 0.00073 4.380 × 10 - 7 
bouillon cube, chicken resupply 1.508 100% 100% 100% 1.508 0.00073 1.100 × 10 - 6 
brown rice, uncooked rice 8.992 100% 100% 100% 8.992 0.00133 1.196 × 10 - 5 
butter sprinkles resupply 0.020 100% 100% 100% 0.020 0.00073 1.460 × 10 - 8 
cabbage, shredded salad 3.750 85% 90% 95% 4.167 n/a n/a 
carrot, whole salad 45.957 55% 60% 65% 51.063 n/a n/a 
carrots, grated salad 7.661 55% 60% 65% 12.769 n/a n/a 
carrots, shredded salad 8.272 55% 60% 65% 13.786 n/a n/a 
carrots, sliced/chopped salad 11.437 55% 60% 65% 19.061 n/a n/a 
cayenne pepper resupply 0.025 100% 100% 100% 0.025 0.00178 4.450 × 10 - 8 
chili powder resupply 0.250 100% 100% 100% 0.250 0.00178 4.450 × 10 - 7 
cilantro, dried resupply 0.030 100% 100% 100% 0.030 0.00769 2.307 × 10 - 7 
cinnamon resupply 0.155 100% 100% 100% 0.155 0.00178 2.759 × 10 - 7 
cloves, ground resupply 0.004 100% 100% 100% 0.004 0.00178 7.417 × 10 - 9 
cocoa powder resupply 4.938 100% 100% 100% 4.938 0.00178 8.790 × 10 - 6 
coffee, instant resupply 0.133 100% 100% 100% 0.133 0.00073 9.733 × 10 - 8 
coriander, ground resupply 0.035 100% 100% 100% 0.035 0.00178 6.181 × 10 - 8 
coriander, seeds resupply 0.016 100% 100% 100% 0.016 0.00073 1.196 × 10 - 8 
cornstarch resupply 1.070 100% 100% 100% 1.070 0.00178 1.905 × 10 - 6 
cumin resupply 0.284 100% 100% 100% 0.284 0.00178 5.053 × 10 - 7 
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Table 4-58 Ingredients, Commodity Sources, and Yield Values on a Per-Crewmember Per-Day Basis for 10-Day, Bulk-Commodity Menu 

 

Ingredient Source 

Daily 
Menu 
Ingredient 
Mass 
[g/CM-d] 

Minimum 
Yield 

Nominal 
Yield 

Maximum 
Yield 

Nominal 
Unprocessed 
Ingredient 
Mass 

[g/CM-d] 

Specific 
Volume 
Factor 
[m³/kg] 

Nominal 
Unprocessed 
Ingredient 
Volume 
[m³/CM-d] 

dill weed, dried resupply 0.091 100% 100% 100% 0.091 0.00769 6.964 × 10 - 7 
egg, dried/white resupply 0.233 100% 100% 100% 0.233 0.00178 4.153 × 10 - 7 
egg, dried/whole resupply 2.912 100% 100% 100% 2.912 0.00178 5.183 × 10 - 6 
elbow macaroni, uncooked resupply 3.150 100% 100% 100% 3.150 0.00250 7.875 × 10 - 6 
extract, almond resupply 0.173 100% 100% 100% 0.173 0.00133 2.298 × 10 - 7 
extract, maple resupply 0.010 100% 100% 100% 0.010 0.00133 1.293 × 10 - 8 
extract, vanilla resupply 3.738 100% 100% 100% 3.738 0.00133 4.971 × 10 - 6 
garlic, granulated resupply 0.606 100% 100% 100% 0.606 0.00073 4.421 × 10 - 7 
garlic, powder resupply 0.514 100% 100% 100% 0.514 0.00178 9.147 × 10 - 7 
ginger, dried/ground resupply 0.078 100% 100% 100% 0.078 0.00178 1.389 × 10 - 7 
green onion, chopped salad 11.335 85% 95% 95% 11.932 n/a n/a 
kidney beans, uncooked dry bean 3.017 100% 100% 100% 3.017 0.00133 4.012 × 10 - 6 
lemon juice resupply 0.808 100% 100% 100% 0.808 0.00133 1.075 × 10 - 6 
lentils, uncooked dry bean 13.007 100% 100% 100% 13.007 0.00133 1.730 × 10 - 5 
lettuce salad 2.815 85% 90% 95% 3.128 n/a n/a 
lime juice resupply 0.009 100% 100% 100% 0.009 0.00133 1.219 × 10 - 8 
mustard, ground resupply 0.273 100% 100% 100% 0.273 0.00178 4.851 × 10 - 7 
navy beans, uncooked dry bean 7.313 100% 100% 100% 7.313 0.00133 9.726 × 10 - 6 
nutmeg, ground resupply 0.015 100% 100% 100% 0.015 0.00178 2.670 × 10 - 8 
oil, peanut peanuts 24.578 30% 35% 40% 70.223 0.00133 9.340 × 10 - 5 
onion, dried/flakes resupply 9.173 100% 100% 100% 9.173 0.00769 7.054 × 10 - 5 
oregano, dried/whole resupply 0.279 100% 100% 100% 0.279 0.00769 2.147 × 10 - 6 
paprika resupply 0.035 100% 100% 100% 0.035 0.00178 6.230 × 10 - 8 
parsley, dried resupply 0.294 100% 100% 100% 0.294 0.00769 2.260 × 10 - 6 
peanut butter peanuts 11.022 90% 95% 100% 11.602 0.00133 1.543 × 10 - 5 
peanuts w/o shell peanuts 0.677 92% 95% 98% 0.713 0.00133 9.481 × 10 - 7 
pinto beans, uncooked dry bean 4.962 100% 100% 100% 4.962 0.00133 6.599 × 10 - 6 
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Table 4-58 Ingredients, Commodity Sources, and Yield Values on a Per-Crewmember Per-Day Basis for 10-Day, Bulk-Commodity Menu 

 

Ingredient Source 

Daily 
Menu 
Ingredient 
Mass 
[g/CM-d] 

Minimum 
Yield 

Nominal 
Yield 

Maximum 
Yield 

Nominal 
Unprocessed 
Ingredient 
Mass 

[g/CM-d] 

Specific 
Volume 
Factor 
[m³/kg] 

Nominal 
Unprocessed 
Ingredient 

Volume 
[m³/CM-d] 

potato, white white potato 41.933 65% 70% 75% 59.905 n/a n/a 
potato, white/peeled white potato 15.237 60% 65% 70% 23.441 n/a n/a 
potato, white/shredded white potato 11.067 65% 70% 75% 15.810 n/a n/a 
potato, white/sliced/diced white potato 2.833 65% 70% 75% 4.048 n/a n/a 
radish salad 1.068 45% 50% 55% 2.137 n/a n/a 
red pepper flakes resupply 0.014 100% 100% 100% 0.014 0.00769 1.047 × 10 - 7 
rosemary, dried resupply 0.005 100% 100% 100% 0.005 0.00769 4.059 × 10 - 8 
sage, dried resupply 0.041 100% 100% 100% 0.041 0.00769 3.161 × 10 - 7 
Salt resupply 4.790 100% 100% 100% 4.790 0.00073 3.497 × 10 - 6 
savory, dried resupply 0.033 100% 100% 100% 0.033 0.00769 2.563 × 10 - 7 
soy sauce powder resupply 2.852 100% 100% 100% 2.852 0.00178 5.076 × 10 - 6 
soybeans, uncooked soybean 4.750 100% 100% 100% 4.750 0.00133 6.318 × 10 - 6 
soymilk soybean 237.862 688% 750% 816% 31.715 0.00133 4.218 × 10 - 5 
spinach salad 27.750 85% 90% 95% 30.833 n/a n/a 
starch, instant resupply 7.908 100% 100% 100% 7.908 0.00178 1.408 × 10 - 5 
strawberries salad 28.708 30% 35% 40% 82.024 n/a n/a 
sugar, brown resupply 0.346 100% 100% 100% 0.346 0.00073 2.523 × 10 - 7 
sugar, granulated resupply 63.389 100% 100% 100% 63.389 0.00073 4.627 × 10 - 5 
sweet potato sweet potato 46.567 35% 40% 45% 116.417 n/a n/a 
sweet potato, mashed sweet potato 5.925 35% 40% 45% 14.813 n/a n/a 
sweet potato, sliced sweet potato 22.667 35% 40% 45% 56.667 n/a n/a 
tarragon, dried resupply 0.017 100% 100% 100% 0.017 0.00769 1.282 × 10 - 7 
textured soy protein soybean 2.575 100% 100% 100% 2.575 0.00133 3.425 × 10 - 6 
thyme, dried resupply 0.280 100% 100% 100% 0.280 0.00769 2.153 × 10 - 6 
tofu, firm soybean 39.913 367% 400% 433% 9.978 0.00133 1.327 × 10 - 5 
tofu, soft soybean 20.513 367% 400% 433% 5.128 0.00133 6.821 × 10 - 6 
tomato, diced salad 51.755 40% 45% 50% 115.010 n/a n/a 
tomato, dried salad 0.373 40% 45% 50% 0.830 n/a n/a 
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Table 4-58 Ingredients, Commodity Sources, and Yield Values on a Per-Crewmember Per-Day Basis for 10-Day, Bulk-Commodity Menu 

 

Ingredient Source 

Daily 
Menu 
Ingredient 
Mass 
[g/CM-d] 

Minimum 
Yield 

Nominal 
Yield 

Maximum 
Yield 

Nominal 
Unprocessed 
Ingredient 
Mass 

[g/CM-d] 

Specific 
Volume 
Factor 
[m³/kg] 

Nominal 
Unprocessed 
Ingredient 

Volume 
[m³/CM-d] 

tomato, paste salad 1.027 40% 45% 50% 2.281 n/a n/a 
tomato, sauce salad 85.703 40% 45% 50% 190.450 n/a n/a 
tomato, whole salad 39.385 40% 45% 50% 87.523 n/a n/a 
vinegar resupply 7.450 100% 100% 100% 7.450 0.00133 9.909 × 10 - 6 
water water 317.263 100% 100% 100% 317.263 n/a n/a 
water, cook water 238.943 100% 100% 100% 238.943 n/a n/a 
water, ice water 20.737 100% 100% 100% 20.737 n/a n/a 
water, rinse water 39.500 100% 100% 100% 39.500 n/a n/a 
wheat flour wheat 59.574 98% 99% 100% 60.176 0.00133 8.003 × 10 - 5 
white flour wheat 94.234 67% 72% 77% 130.881 0.00133 1.741 × 10 - 4 
white pepper resupply 0.061 100% 100% 100% 0.061 0.00178 1.078 × 10 - 7 
white rice, uncooked rice 5.682 110% 115% 120% 4.941 0.00133 6.571 × 10 - 6 
yeast, dried resupply 2.663 100% 100% 100% 2.663 0.00073 1.944 × 10 - 6 
ziti, uncooked resupply 5.677 100% 100% 100% 5.677 0.00250 1.419 × 10 - 5 
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4.5.6.2 EQUIPMENT 

Equipment allows food commodities to be processed into ingredients and ultimately into palatable and 
nutritious food entries.  The equipment selected and described here addresses one or more necessary functions.  
These functions are to (1) provide the ingredients required by the 10-day menu, (2) keep ingredients or products 
viable, or (3) prepare menu items from ingredients.  Because corresponding flight hardware is unavailable, the 
hardware below reflect commercial machines that are believed to be representative in both functionality and size 
to what might be designed ultimately for flight.  French and Perchonok (2006) note that “the listed equipment, 
though smaller in size, may still be [over-sized] for missions supporting” the number of people associated with 
projected near-term crews. Table 4-59 and Table 4-60 list the recommended hardware to support preparation of 
the 10-day bulk commodity menu from bulk commodities, crops taken from a biomass production chamber, and 
other foodstuffs supplied to the finished menu listed by French and Perchonok (2006). Note that this level of food 
preparation would likely require a dishwasher, which is not listed here. 

Table 4-59 Mechanical Processor Characteristics for 10-Day Bulk Commodity Menu 

Technology 
Manufacturer 

/ Model125 
Ingredient(s) 

Produced 
Processing 

Rate 

Unit 
Mass 
[kg] 

Unit 
Volume 

[m³] 

Unit 
Power 
[kWe] 

Duty 
Cycle 

Grind Mill Brabender 
/Quadramat Jr. 

wheat flour, 
white flour 5.9 kg/h 69 0.22 0.46  

Dehydrator L’Equip/528 tomato, dried n/a 4.54 0.034 0.55  
Concentrator Armfield/FT18 tomato, paste; 

tomato, sauce 3 L/h 220 0.54 2.2  

Soymilk 
/ Tofu Maker SoyaJoy 

soymilk 6 kg/h 
2.95 0.015 0.8  tofu, firm; 

tofu, soft n/a 

Oil Press Skeppsta 
Maskin AB 
/Type 20 

oil, peanut 4 kg/h 5.9 0.069 0.4  

Refrigerator 
/ Freezer 126 

Sub Zero 
/700 BC  n/a 86 0.37 127 1.725 0.030 

                                                           
125  This is for reference only and does not imply product endorsement. 
126 French and Perchonok (2006) recommend two refrigerator / freezer units, minimum, to support the 10-day bulk 

commodity menu. 
127 Internal capacity is 0.141 m³, divided as 0.082 m³ for the refrigerator and 0.059 m³ for the freezer. 
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Table 4-60 Food Preparation Equipment for 10-Day Bulk Commodity Menu 

Equipment Name 

Unit 
Mass 
[kg] 

Unit 
Volume 

[m³] 

Unit 
Power 
[kWe] 

Duty 
Cycle 

Baking Dish/Pan 1.50 0.004   
Biscuit Cutter 0.03 0.000   
Blender 6.70 0.015 0.6  
Bowl (Large) 0.44 0.013   
Bowl (Medium) 0.35 0.009   
Bowl (Small) 0.30 0.006   
Breadmaker 6.62 0.026 0.52  
Brillo 0.03 0.000   
Cake Pan 0.19 0.005   
Colander 0.40 0.013   
Convection Oven 174.60 1.080 5.5  
Cookie Sheet 0.33 0.002   
Food Processor #2 6.70 0.020 0.72  
Fork 0.03 0.000   
Hot Pad 0.10 0.000   
Ice Cream Maker 2.75 0.012 0.01  
Juicer 4.33 0.023 0.4  
Knife (Bread) 0.14 0.000   
Knife (Chef) 0.22 0.000   
Knife (Paring) 0.07 0.000   
Loaf Pan 0.16 0.002   
Measuring Cup 0.30 0.001   
Measuring Spoons 0.10 0.000   
Muffin Cups 0.37 0.033   
Pan (Pie) 0.16 0.003   
Pasta Maker 3.05 0.005   
Pot (Large) 3.35 0.023   
Pot (Medium) 2.28 0.014   
Pot (Small) 1.20 0.006   
Potato Masher 0.16 0.002   
Potato Peeler 0.07 0.000   
Pressure Cooker 2.70 0.016   
Range 0.00 0.000 3.35  
Rolling Pin 0.64 0.002   
Saucepan (Large) 2.36 0.014   
Saucepan (Medium) 1.77 0.010   
Saucepan (Small) 1.18 0.006   
Skillet (Large) 1.47 0.018   
Slotted Spoon 0.04 0.001   
Spatula 0.07 0.001   
Spoon, Metal 0.03 0.000   
Spoon, Wooden 0.05 0.000   
Tongs 0.08 0.001   
Tortilla Press 15.50 0.047 1.8  
Whisk 0.13 0.001   
Wire Rack 0.15 0.001   
Total 243.16 1.43 12.9  
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4.5.6.3 CREWTIME 

Many food interface activities require additional mechanical inputs beyond what is currently associated 
with the hardware listed in Section 4.5.6.2.  While it may be possible to automate some food preparation activities, 
historically such complex inputs are provided by human beings.  Thus, here, without further analyses, it is assumed 
that mechanical inputs beyond those provided by the hardware listed above will be fulfilled by the crew. 128 

Per French and Perchonok (2006), crewtime has been classified as either active or passive time.  Active 
time includes those activities that require the full attention of a crewmember, while passive time may not require 
the full attention of the crewmember but the task does have some level of cognitive impact.  French and Perchonok 
(2006) include estimates of crewtime for the following activities: 

• Recipe preparation 
• Meal consumption  
• Ingredient processing 
• Equipment maintenance 

4.5.6.3.1 RECIPE PREPARATION, MEAL CONSUMPTION AND MEAL CLEANUP 
French and Perchonok (2006) recorded preparation times for each recipe in the 10-day bulk commodity 

menu.  Table 4-61 provides a breakdown of active and passive time for each day of the menu.  For this study, 
French and Perchonok (2006) assumed a crew of six.  Thus, a smaller crew will require less crewtime than is listed 
here for this same menu, but food preparation crewtime is not expected to scale linearly as a function of crew size 
for crews of four to six crewmembers or smaller. Note that there were many assumptions in this work. Some 
updates were made in Cooper (2012), but there are still gaps in assumptions. For instance, the study only looked 
at acceptability of individual foods tried once, rather than the food system as a whole (having to cook and process, 
risk of crop failure, and not having meat). These also don't include crop tending/harvest time. 

 

Table 4-61 Crewtime Requirements for 10-Day Bulk Commodity Menu 

Event 

Active 
Time 
[min] 

Passive 
Time 
[min] 

Day 1 160 115 
Day 2 145 397 
Day 3 120 182 
Day 4 210 700 
Day 5 140 170 
Day 6 155 357 
Day 7 195 520 
Day 8 190 185 
Day 9 100 232 
Day 10 115 345 
Total 1,530 3,203 

For this menu, a 30-minute allotment is assumed for meal consumption.  Because there are three meals 
per day scheduled for this 10-day bulk commodity menu, this assumption becomes 90 minutes per crewmember 
per day.  A 10-minute total allotment is assumed to cleanup each meal.  Similarly, this assumption becomes 
30 minutes per day to accommodate the three-meal schedule. 

                                                           
128 While this is one approach, it may or may not be an optimal approach.  Additional testing and analysis of the benefits 

and costs of using automation versus the crew for various food preparation tasks is most likely necessary before this 
question can be addressed with any certainty. 
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4.5.6.3.2 INGREDIENT PROCESSING AND EQUIPMENT MAINTENANCE 

French and Perchonok (2006) determined crewtime values for each piece of ingredient processing 
equipment based on the documented throughput capacity of the processing equipment, the mass totals of the 
associated ingredient(s), Table 4-58, the ingredient source nominal yield value, also Table 4-58, and estimated 
times for indirectly associated steps.  Table 4-59 provides documented throughput capacity values and French and 
Perchonok (2006) provide the rationale surrounding determination of estimated ingredient processing equipment 
crewtime values for interested readers. 

During long-duration missions, food processing equipment will require maintenance of some kind.  It is 
assumed that an additional 10% of ingredient processing time will be required to perform this function.  Table 4-62 
lists the associated crewtime for each of the processed ingredients per 10-day menu cycle.  As with the other work 
in French and Perchonok (2006), this assessment assumes a crew of six. 129 

Table 4-62 Ingredient Processing Equipment Crewtime Values for Each 10-Day Menu Cycle 

Technology 
Manufacturer 

/ Model130 
Associated 

Ingredient(s) 
Crewtime 
[CM-h] 131 

Grind Mill C. W. Brabender 
/Quadramat Jr. 

wheat flour 
white flour 2.0 

Dehydrator L’Equip/528 tomato, dried 8.0 
Concentrator Armfield/FT18 tomato, sauce 

tomato, paste 1.0 

Soymilk 
/Tofu maker SoyaJoy 

soymilk 
tofu, soft 
tofu, firm 

8.1 

Oil Press Skeppsta Maskin AB 
/Type 20 oil, peanut 1.1 

Subtotal   20.0 
Maintenance (10% of Subtotal)  2.0 
Total   22.0 

4.5.6.4 NUTRITION 

French and Perchonok (2006) analyzed their 10-day menu using bulk-packaged foods for nutrient content 
using the Nutritionist Five database.  Table 4-63 presents these results along with the corresponding 
Recommended Dietary Allowance (RDA) goals and NASA nutritional goals for each component. 132 

While the nominal daily metabolic intake for a generic 70 kg crewmember is 11.82 MJ/CM-d, and the 
overall metabolic energy value in Table 4-63 falls short of this goal, this menu assessment, according to French 
and Perchonok (2006) excludes snacks and beverages.  Once they are added to this menu the daily metabolic 
energy will be closer to NASA’s previous requirement, but will still be short of the current requirement.  Further, 
the inclusion of calcium fortified beverages will increase the calcium content of the menu; however, this is an area 
of continued focus.  There may be other means of calcium delivery available to this bulk-ingredient menu that 
have not been used historically by NASA for human space flight programs. 

                                                           
129 While the crewtime values here may include some setup time, so the total time expended will not scale linearly with 

crew size, as a first approximation linear scaling should be sufficiently accurate. 
130  This is for reference only and does not imply product endorsement. 
131 French and Perchonok developed these estimates based on a crew of six.  The values here represent crewtime for one 

10-day menu cycle.  While the crewtime values here may include some setup time, so the total time expended will not 
scale linearly with crew size, as a first approximation linear scaling should be sufficiently accurate. 

132 While these values apply for a generic menu, French and Perchonok (2006) note that “current menu planning for shuttle 
was and for the International Space Station (ISS) is personalized to kilocalorie and nutrient intake requirements; some 
vitamins and minerals such as vitamin C, iron and biotin have adjusted requirement levels to accommodate a reduced 
(microgravity) gravity environment.”  Further, they note “Vitamin D supplements are currently provided for the ISS 
crewmembers’ daily use.” 
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Table 4-63 Nutrient Values for 10-Day Bulk-Packaged Food Menu 

Nutrition 
Parameter 

Menu 
Value Units 

RDA 
Goal 

NASA 
Goal 

% 
RDA 
Goal 

% 
NASA 
Goal 

Metabolic Energy 1,777.8 kcal/CM-d 2,000.0 -- 89 -- 
 7.44 MJ/CM-d 8.37 -- 89 -- 
Macronutrients       
Protein 57.3 g/CM-d 50.0 -- 115 -- 
Carbohydrates 299.0 g/CM-d 300.0 -- 100 -- 
Fat 43.8 g/CM-d 65.0 -- 67 -- 
Cholesterol 50.0 mg/CM-d 300.0 300.0 17 17 
Saturated Fat 7.4 g/CM-d 20.0 20.0 37 37 
Dietary Fiber 38.2 g/CM-d 25.0 25.0 153 153 
Micronutrients       
Sodium 2,984.1 mg/CM-d 2,400.0 2,400.0 124 124 
Potassium 2,915.9 mg/CM-d 3,500.0 3,500.0 83 83 
Vitamin A 28,233.3 IU/CM-d 133 5,000.0 5,000.0 565 565 
Vitamin C 110.5 mg/CM-d 60.0 100.0 184 111 
Calcium 369.3 mg/CM-d 1,000.0 1,000.0 37 37 
Iron 18.9 mg/CM-d 18.0 10.0 105 189 
Vitamin D 5.5 IU/CM-d 134 400.0 400.0 1 1 
Vitamin E 13.6 IU/CM-d 135 30.0 30.0 45 45 
Thiamin 2.1 mg/CM-d 1.5 1.5 138 138 
Riboflavin 1.4 mg/CM-d 1.7 2.0 81 70 
Niacin 16.8 mg/CM-d 20.0 20.0 84 84 
Vitamin B6 1.4 mg/CM-d 2.0 2.0 71 71 
Folate 349.1 μg/CM-d 400.0 400.0 87 87 
Vitamin B12 0.1 μg/CM-d 6.0 2.0 2 5 
Biotin 21.1 μg/CM-d 300.0 100.0 7 21 
Pantothenic acid 3.4 mg/CM-d 10.0 5.0 34 68 
Vitamin K 145.5 μg/CM-d 80.0 80.0 182 182 
Phosphorous 983.7 mg/CM-d 1,000.0 1,000.0 98 98 
Magnesium 379.3 mg/CM-d 400.0 350.0 95 108 
Zinc 6.9 mg/CM-d 15.0 15.0 46 46 
Copper 1.9 mg/CM-d 2.0 2.0 93 93 
Manganese 5.2 mg/CM-d 2.0 5.0 259 104 
Selenium 0.07 mg/CM-d 0.07 0.07 98 98 
Chromium 0.07 mg/CM-d 0.12 0.12 58 58 
Molybdenum 29.5 μg/CM-d 75.0 75.0 39 39 

4.5.7 FOOD SUBSYSTEMS BASED ON BIOMASS PRODUCTION SYSTEMS 
Crops within a biomass production chamber will likely be grown and harvested on a bulk basis, rather 

than quasi-continuously.  This assumption is designed to minimize crewtime requirements by making crew 
activities more efficient, and may be revisited when more data is available.  The three diets presented here assume 
differing availabilities for crops grown on-site.  Table 4-64 provides wet or fresh masses for the dietary 
components, as received from the Biomass Subsystem, while Table 4-65 provides the corresponding nutritional 
information. 
                                                           
133 1 International Unit (IU) of Vitamin A is the biological equivalent of 0.3 μg retinol, or of 0.6 μg beta-carotene. 
134 1 International Unit (IU) of Vitamin D is the biological equivalent of 1/40 μg, exactly, cholecalciferol / ergocalciferol. 
135 1 International Unit (IU) of Vitamin E is the biological equivalent of 2/3 mg, exactly, of d-alpha-tocopherol or of 1 mg 

of dl-alpha-tocopherol acetate. 
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Table 4-64 Menu Masses for Diets Using Advanced Life Support Crops and Resupplied Foods [Note 
that this table is based on 11.82MJ/CM-d, whereas subsequent tables have been updated to 
a higher energy requirement] 

 
Average Production Based on Consumption, 

Fresh Mass [kg/CM-d] 

Crop 

Diet Using 
Only ELS 

Salad 
Crops 136 

Diet Using 
Salad and 

Carbohydrate 
Crops 137 

Diet Using All 
ELS Crops 138 

Cabbage 0.0194 0.0025 n/a 
Carrot 0.0365 0.040 0.0401 
Celery n/a 0.0075 n/a 
Dry Bean, inc. lentil and pinto n/a 0.013 0.0214 
Green Onion 0.0045 0.034 0.0226 
Lettuce 0.0156 0.021 0.0075 
Mushroom n/a 0.0013 n/a 
Pea n/a 0.0038 n/a 
Peanut n/a n/a 0.0288 
Peppers n/a 0.031 n/a 
Radish 0.009 n/a 0.0150 
Rice n/a n/a 0.0214 
Snap Bean n/a 0.010 n/a 
Soybean n/a n/a 0.2340 
Spinach 0.0048 0.040 0.0463 
Sweet Potato n/a 0.18 0.0768 
Tomato 0.0460 0.21 0.2854 
Wheat n/a 0.22 0.0963 
White Potato n/a 0.17 0.1047 
Crop Sub Total 0.1358 1.0 1.00 
Water 139 1.1581 2.1 0.6053 
Resupplied Foodstuffs 1.168 140 0.5 140, 141 0.0944 
Total 2.462 3.6 1.70 
Potable Water 142 2.0 2.0 2.0 
Food Processing Waste TBD TBD 0.094 

                                                           
136 From Hall, et al. (2000).  This diet assumes a 10-day cycle. 
137 From Personal communication with Hall and Vodovotz in 1999.  This diet assumes a 20-day cycle. 
138 From Ruminsky and Hentges (2000).  This diet assumes a 10-day cycle. 
139 Water for hydration, cooking, and food preparation only.  Water for cleanup is not included.  Water tankage is not 

included. 
140 Resupplied food is a combination of STS and ISS foodstuffs. 
141 Oil is included as resupply.  No frozen or refrigerated foods are assumed for this calculation.  Packaging is not included.  

Resupplied food is about 40 % moisture by mass.  Resupplied food includes meat. 
142 The crew also requires 2.0 L/CM-d for drinks, again excluding packaging/tankage.  (Perchonok, 2001) 



Life Support Baseline Values and Assumptions Document, NASA/TP-2015-218570, Rev1 January 2018 

 

134 

In all cases, the menus given in Table 4-64 and Table 4-65 are designed for use as a unit in order to 
maintain nutritional integrity.  However, minor changes might include moving small amounts of crops from the 
list to be grown and into the resupplied mass, especially for those items like rice that are prepared for consumption 
with Outpost-plant growth processing operations that reduce the total edible biomass from the original crop.  All 
diets are comparable in nutritional content to the International Space Station Assembly Complete food system. 
 

Table 4-65   Nutritional Content of Diets Using Advanced Life Support Crops and Resupplied Foods    
[Note that this table is based on original 11.82MJ/CM-d since its purpose is nutritional 
integrity, whereas subsequent tables have been updated to a higher energy requirement.] 

Dietary 
Component Units Goal 

Diet Using 
Only ELS 

Salad 
Crops 136 

Diet Using 
Salad and 

Carbohydrate 
Crops 137 

Diet Using All 
ELS Crops 138 

Energy MJ/CM-d 11.82 143 9.31 9.74 7.74 

Carbohydrate g/CM-d – 312.179 357.1 314.12 
Fat g/CM-d – 71.9141 71.6 46.84 
Protein g/CM-d – 91.2913 73.1 54.91 

Calcium, Ca mg/CM-d 1,000 – 1,200 144 925.557 812 545 
Iron, Fe mg/CM-d < 10 144 19.2385 21.5 17.23 
Magnesium, Mg mg/CM-d 350 144 294.687 386 376.48 
Phosphorous, P mg/CM-d < 1.5 Ca intake 144 1,440.68 1,356 1,079.52 
Potassium, K mg/CM-d ~ 3,500 144 3,316.57 3,723 3,179.86 
Sodium, Na mg/CM-d 1,500 – 3,500 144 3,909.56 3,600 3,205.96 
Zinc, Zn mg/CM-d 15 144 12.8077 10 7.5 

Dietary Fiber g/CM-d 10 – 25 144 25.1129 33.3 28.5 

Percentage of Energy Contributed to Diet    

Carbohydrate % 50 – 55 144 55.5 61 68.1 
Fat % 30 – 35 144 28.7 27 22.4 
Protein % 12 – 15 144 16.2 12 12 

The Diet Using Only Salad Crops (Hall, et al., 2000) is aimed at near-term missions and supplements 
more traditional packaged food systems with fresh food in the form of salad crops.  The bulk of the nutritional 
content is supplied by the packaged food and the degree of food system closure is low. 

The Diet Using Salad and Carbohydrate Crops (Personal Communication with P. Hall and Y. Vodovotz, 
in 1999) is also aimed at near-term missions, but this diet provides somewhere around half of the necessary mass 
through crops grown on-site.  Resupply includes products high in protein, such as meat, in addition to seasonings 
and other supporting foodstuffs.  Oil is also provided via resupply, as typical oil crops are not grown for this diet.  
Overall, this approach provides greater on-site food closure, adds only moderate additional food processing, and 
provides variety equivalent to that of a vegetable garden. 

The Diet Using All Crops (Ruminsky and Hentges, 2000) uses a wide variety of species, and provides a 
high degree of closure.  Oil is provided from peanut, but the specific processing has not been identified.  With 

                                                           
143 From NASA (1991). 
144 From Lane, et al. (1996). 
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respect to closure, the resupply mass includes herbs and condiments.  As the crop variety is limited, resupply items 
provide necessary nutrients that are not available in sufficient quantities within the grown biomass. 

Levri, et al. (2001) examined prepackaged food systems for exploration missions to Mars using the 
standard Shuttle Training Menu with a 7-day menu cycle as a basis.  To support the nominal NASA crewmember, 
the standard Shuttle Training Menu was adjusted slightly to raise the energy content to 11.82 MJ/CM-d.  In the 
2014 BVAD, energy content was further increased to 12.707 MJ/CM-d in order to match modern nutritional 
requirements in the following 4 tables. Data collected by Levri, et al. (2001) showed that the practical minimum 
wastage rate of resupplied food for situations in which the crew attempts to eat all of the food with which they are 
supplied is 3 % by mass.  This remaining 3 % of the food mass adheres to the inside of the food packaging. 

Table 4-66 presents mass and volume properties for three study food systems, as originally formulated 
by Levri, et al. (2001), which are modified from the standard Shuttle Training Menu, but do not take into account 
the newest ISS consumption rates in Table 4-53.  Each system assumes crew metabolic loads consistent with 
intravehicular activities.  “As-shipped” food contains any moisture present when the food is packaged for launch.  
Food “as-consumed” also includes any additional water that is added to rehydrate food items and powdered 
beverages before consumption.  The additional drinking water is computed based on the assumption that a 
crewmember consumes at least 239.0 milliliters of water, either within food or in addition to food, for every 
Mega-Joule of metabolic energy within the consumed food to provide proper hydration for metabolic assimilation 
of the food. 145  Some sources, such as the NRC (1989), recommend as much as 358.5 milliliters of water per 
Mega-Joule of energy in the consumed food.  Generally, these food systems are stored under ambient conditions 
in an ISS food locker.  Frozen storage, when noted, assumes an ISS thermoelectric freezer (Section 4.5.2).  Locker 
and freezer volumes are computed with respect to external dimensions. 

Table 4-66   Properties of Early Mars Diets for Intravehicular Activities Using Resupplied Foods 

 

 

Units 

Modified 
Shuttle 

Training 
Menu 146 

Low 
Moisture 
Content 
Menu 

Menu 
Containing 

Some 
Frozen 
Food 

IVA Food Properties, No Packaging      
Food, Dry Mass  kg/CM-d 0.71 0.71 0.72 
Food “As-Shipped”  kg/CM-d 1.23 0.99 1.48 
Moisture Content of Food “As-Shipped”  % 42 28 52 
Food “As-Consumed,” with Rehydration  kg/CM-d 2.58 2.37 2.56 
Additional Drinking Water  kg/CM-d 1.22 1.42 1.24 

IVA Food Packaging Properties         
Packaging Mass  kg/CM-d 0.28 0.29 0.26 

IVA Food Locker Properties 147         
Locker Mass  kg/CM-d 0.37 0.35 0.27 
Locker Volume  m³/CM-d 0.00519 0.00486 0.00381 

IVA Food Freezer Properties         
Freezer Mass  kg/CM-d n/a n/a 0.866 
Freezer Volume  m³/CM-d n/a n/a 0.00231 

IVA Food and Packaging Waste         
Trash Mass  kg/CM-d 0.35 0.34 0.31 

                                                           
145 Alternately, this guideline may be formulated as 1.0 milliliters of water per kilocalorie of food energy consumed. 
146 From Levri (2002), but values here have been scaled up to reflect a higher total daily energy content.  The values here 

include material that normally clings to food packaging and is discarded. 
147 Food maintained at ambient conditions is stored in lockers aboard ISS.  These values assume ISS “Pantry-style storage. 
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Table 4-67 provides the nutritional analysis for the food systems presented in Table 4-66.  However, 
unlike Table 4-66 which is based on all food “as shipped,” including food that adheres to the food packaging and 
is not consumed by the crewmember, values in Table 4-67 consider only the edible material a nominal 
crewmember consumes, and assume the crewmember attempts to eat all of the food within a package and only 
wastes material that adheres to the package walls. 

Table 4-67   Nutritional Content of Early Mars Diets for Intravehicular Activities Using   
 Resupplied Foods, for Levri, et al studies 

Dietary Component Units 

Modified 
Shuttle 

Training 
Menu 148 

Low Moisture 
Content 
Menu 148 

Menu 
Containing 

Some Frozen 
Food 148 

Energy MJ/CM-d 12.71 12.71 12.71 

Carbohydrate g/CM-d 404 411 399 
Fat g/CM-d 104 100 105 
Protein g/CM-d 122 124 125 

Dietary Fiber g/CM-d 35 36 40 
Ash g/CM-d 29 27 33 
Water in Food 149 g/CM-d 501 267 742 
Rehydration Water g/CM-d 1,321 1,350 1,057 
Additional Drinking Water 150 g/CM-d 1,218 1,423 1,241 

Percentage of Energy Contributed to Diet      

Carbohydrate % 53 54 53 
Fat % 31 30 31 
Protein % 16 16 16 

Based on the dietary contributions of salad crops suggested by Perchonok, et al. (2002) and data compiled 
by Levri, et al. (2001), four diets using salad crops and resupplied food systems are presented in Table 4-68  The 
crop values listed here are based on fresh salad crops, as received from the Biomass Subsystem, less any biomass 
removed during preparation.  Resupplied foodstuffs are listed “as-shipped,” without rehydration water, and do not 
include packaging materials.  Values here do not include material that adheres to packaging and is ultimately 
wasted.  Drinking water is listed near the bottom of the table.  As above, the drink water assumes that a 
crewmember consumes at least 239.0 milliliters of water, either within food or in addition to food, for every 
Mega-Joule of metabolic energy within the consumed food to provide proper hydration for metabolic assimilation 
of the food.  The listings for food processing waste consider wasted edible biomass from preparation of the salad 
crops plus resupplied food that adheres to packaging materials.  Here it is assumed that 3 % of the food mass within 
a prepackaged food item will adhere to the packaging. 

                                                           
148 From Levri (2002), but values here have been scaled up to reflect a somewhat higher total daily energy content.  The 

values here are based on food “as consumed” by a crewmember, excluding material that normally clings to the food 
packaging. 

149 Moisture, or water, held in the food as shipped before rehydration. 
150 The additional drinking water is computed based on the assumption that a crewmember consumes at least 239.0 

milliliters of water, either within food or in addition to food, for every Mega-Joule of metabolic energy within the 
consumed food to provide proper hydration for metabolic assimilation of the food.  These values are identical to those 
in Table 4-67 because losses were not measured or assumed. 
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Table 4-68   Menu Masses for Diets Using Advanced Life Support Crops and Resupplied Foods 

 Average Production Based on Consumption, Fresh Mass [kg/CM-d] 

Crop 

Diet Using 
Shuttle 

Training 
Menu and 
ELS Salad 
Crops 151 

Diet Using 
Low Moisture 
Content Menu 
and ELS Salad 

Crops 151 

Diet Using ISS 
Assembly 
Complete 

Menu with 
Some Frozen 

Food and ELS 
Salad Crops 151 

Diet Using 
Shuttle 

Training 
Menu and 
ELS Salad 
Crops plus 
Potato 151 

Cabbage 0.0107 0.0107 0.0107 0.0107 
Carrot 0.0357 0.0357 0.0357 0.0357 
Celery n/a n/a n/a n/a 
Dry Bean, inc. lentil and pinto n/a n/a n/a n/a 
Green Onion n/a n/a n/a n/a 
Lettuce 0.0097 0.0097 0.0097 0.0097 
Mushroom n/a n/a n/a n/a 
Pea n/a n/a n/a n/a 
Peanut n/a n/a n/a n/a 
Peppers n/a n/a n/a n/a 
Radish 0.0114 0.0114 0.0114 0.0114 
Rice n/a n/a n/a n/a 
Snap Bean n/a n/a n/a n/a 
Soybean n/a n/a n/a n/a 
Spinach 0.0134 0.0134 0.0134 0.0134 
Sweet Potato n/a n/a n/a n/a 
Tomato 0.0143 0.0143 0.0143 0.0143 
Wheat n/a n/a n/a n/a 
White Potato n/a n/a n/a 0.0840 
Crop Sub Total 0.0953 0.0953 0.0953 0.1793 
Rehydration Water 152 1.3115 1.3409 1.0492 1.2744 
Resupplied Foodstuffs 153 1.187 0.951 1.421 1.154 
Total 2.5942 2.3872 2.5656 2.6075 
Drinking Water 154 1.14 1.35 1.17 1.13 
Food Processing Waste 155 0.0397 0.0324 0.0469 0.0412 

Table 4-69 provides the nutritional analysis for the food systems presented in Table 4-68.  As above, 
values in Table 4-69 consider only the edible material a nominal crewmember consumes, and the crewmember 

                                                           
151 From Levri (2002).  The values here are reflect food “as-shipped,” for prepackaged food, and “as-received” from the 

Biomass Subsystem less preparation waste, for food grown locally.  Wasted food mass is listed separately at the bottom 
of the table.  Thus, crewmembers consume all other masses in this table except for wasted mass. 

152 Water for rehydration only.  Water for cleanup is not included.  Water tankage is not included. 
153 Masses are for food “as shipped,” without packaging, storage lockers, or water for hydration. 
154 Again, this listing excludes packaging/tankage. 
155 These values include the wasted portion of fresh, edible biomass, as well as the wasted portion of resupplied, “as-

consumed” food.  These values do not include packaging. 
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only wastes food material that adheres to the package walls or serving dishes and some edible biomass from crop 
preparation. 

Table 4-69    Nutritional Content of Diets Using Advanced Life Support Crops and Resupplied Foods 

Dietary 
Component Units 

Diet Using 
Shuttle 

Training 
Menu and 
ELS Salad 
Crops 156 

Diet Using 
Low Moisture 

Content 
Menu and 
ELS Salad 
Crops 156 

Diet Using 
ISS Assembly 

Complete 
Menu with 

Some Frozen 
Food and 

ELS Salad 
Crops 156 

Diet Using 
Shuttle 

Training 
Menu and 
ELS Salad 
Crops plus 
Potato 156 

Energy MJ/CM-d 12.71 12.71 12.71 12.71 

Carbohydrate g/CM-d 405 412 400 413 
Fat g/CM-d 103 100 104 101 
Protein g/CM-d 122 124 125 121 

Dietary Fiber g/CM-d 37 38 42 38 
Ash g/CM-d 30 28 33 30 
Water in 
Food 157 g/CM-d 585 352 825 631 

Percentage of Energy Contributed to Diet    

Carbohydrate % 53 54 53 54 
Fat % 31 29 31 30 
Protein % 16 16 16 16 

The four diets, presented in Table 4-68 and Table 4-69 are derived from the standard Shuttle Training 
Menu and work by Levri, et al. (2001), subsequently scaled up in the 2014 BVAD to an energy basis of 12.707 
MJ/CM-d.  The first and fourth diets included prepackaged items from the Modified Shuttle Training Menu.  See 
Table 4-66 and Table 4-67.  The second diet considers prepackaged items from the Low Moisture Content Menu, 
while the third diet employs the Modified Shuttle Training Menu with some frozen items to simulate a food system 
similar to what was (at the time) planned for the space station. 

Perchonok, et al. (2002) provides estimates for salad servings based on preliminary menus for early 
mission scenario testing.  This overall approach assumes a prepackaged food system augmented with grown salad 
crops.  Thus, this diet is analogous to the Diet Using Only Salad Crops from (Personal Communication with P. 
Hall, Y. Vodovotz, and Laurie Peterson in 2000).  Note that Table 4-70 provides inputs only for the dietary 
contributions derived directly from the vegetables.  The supporting prepackaged food items are not included. 

Perchonok, et al. (2002) assumes: 
• Salad is served four times per week. 
• Raw carrots are served as a snack once per week. 
• Carrots are served once per week steamed. 
• Spinach is served once per week either steamed or raw. 
• Bok choy can be served as Cole slaw once per week. 

Table 4-71 provides overall values for locally grown crops for this diet. 
                                                           
156 From Levri (2002), but values here have been scaled up to reflect a higher total daily energy content.  The values here 

are based on food “as consumed” by a crewmember, excluding edible material that normally clings to food packaging 
or serving dishes. 

157 Moisture, or water, held in the food as shipped before rehydration. 
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See also (Cooper, 2011) and (Cooper, 2012) for recent work on exploration food systems. 

Table 4-70 Updated Salad Crop Only Dietary Contributions 

Menu Item Vegetable 

Serving 
Size 158 

[g] 
Number 

per Week 
Serving Rate 159 

[kg/CM-d] 
Salad 1 Lettuce 34 2 0.00971 
 Carrot 40 2 0.01114 
 Radish 40 2 0.01143 
Salad 2 Spinach 20 2 0.01086 
 Tomato (Cherry) 50 2 0.01429 
Snack Carrot 85 1 0.01214 
Steamed Side Dish Spinach 55 1 0.00786 
Cole Slaw Cabbage 63 1 0.009 

 

Table 4-71 Overall Crops Masses for Updated Salad Crop Only Diet 

Vegetable 
Serving Rate 159 

[kg/CM-d] 
Cabbage 0.009 
Carrot 0.03542 
Lettuce 0.00971 
Radish 0.01143 
Spinach 0.01872 
Tomato (Cherry) 0.01429 
Total 0.09857 

4.5.8 FOOD PROCESSING 
Food processing takes the edible biomass produced by plant crops, either fresh or as prepared for storage, 

and produces food products and ingredients such as pasta and flour.  These food products may be stored or used 
immediately, together with ingredients supplied from the Earth (or, for analog testing, from outside the facility), 
and prepared as menu items. 

For long duration missions beyond low-Earth orbit, current planning envisions that crops will be grown 
and processed on a bulk basis.  Hunter and Drysdale (1996) estimated the equipment mass to perform food 
processing for a crew of four to be about 655 kg.  However, this is a very preliminary estimate, and the actual 
processing equipment will likely differ.  Thus, the value here is a suitable “placeholder” until more definitive 
values are available. 

 EXTRAVEHICULAR ACTIVITY SUPPORT INTERFACE 160 

Extravehicular activity (EVA) for planetary exploration missions will exhibit significant differences from 
current EVA in low-Earth orbit.  On a planetary surface, the presence of gravity raises the importance of suit mass, 

                                                           
158 Mass “as prepared.” 
159 Mass per crewmember per day “as grown.”  This is listed as fresh edible biomass.  The associated inedible biomass is 

also produced as given in Table 4-99. 
160 This section on advanced extravehicular activities is from personal communication with M. Rouen in 2001. 
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so planetary surface space suits must be much lighter than current systems.  Such new space suits must also be 
designed for walking, assembly and setup of equipment, picking up surface samples, hammering, etc., to 
accommodate field geology and similar activities necessary for planetary exploration.  The current space suit, or 
extravehicular mobility unit (EMU), does not have these attributes.  It has a mass on the order of 135 kg and is 
designed for weightless mobility using foot restraints.  Table 4-72 represents local accelerations due to gravity for 
planetary bodies and Table 4-73 presents historical EMU masses.  Finally, Table 4-74 presents the weight 161 of 
an average 70 kg crewmember plus historical and current EMU designs under a variety of gravitational conditions.  
As noted, the current EMU, if not reduced in mass for Mars, would burden a crewmember with a weight 12 % 
greater than the weight of a nominal, unencumbered crewmember under terrestrial gravity. 

• Note: The analysis here is not meant to suggest that a historical Apollo EMU or the current Shuttle 
Program EMU will be used for operations on the surface of the Moon or Mars, but rather to 
compare the effects of suits with similar mass.  The current Shuttle Program EMU is inappropriate 
for surface operations, while the historical Apollo EMU has many limitations and would be 
inappropriate for Martian surface operations. 

Table 4-72 Local Accelerations Due to Gravity 

Locale 

Mean 
Acceleration 

due to 
Gravity 
[m/s²] 

Fractional 
Gravity 

compared to 
Earth 

Normal Reference 
Earth 9.807 1.000 Weast and Astle 

(1979) Moon 1.620 0.165 
Mars 3.740 0.381 

 

Table 4-73 Historical Extravehicular Activity Masses 

Item 
Mass 
[kg] References 

Nominal Human Being 70 (1) (1) See Section 3.3.5 
(2) NASA (1969) 
(3) Personal 

communication 
with M. Rouen in 
2002 

(4) Personal 
communication 
with M. Rouen in 
2001 

Apollo Program Spacesuit, A7L 162 83.0 (2) 
Apollo Program Spacesuit, A7LB 163 90.7 (3) 

Shuttle/ISS Program Spacesuit 135 (4) 

                                                           
161 Weight, a force, is defined as the mass of an object [kg], which is invariant with locale, multiplied by the local 

acceleration due to gravity [m/s²].  More specifically, weight is the force with which a planet pulls a mass towards its 
surface and, therefore, the “on back weight” experienced by a crewmember carrying something on the surface in that 
gravity field. 

162 The value here corresponds to the Apollo A7L extravehicular mobility unit and a –6 portable life support system and 
associated equipment.  Apollo 11 used this configuration on the lunar surface.  The EVA surface duration per sortie 
was less than 8 hours in this configuration. 

163 The value here corresponds to the Apollo A7LB extravehicular mobility unit and a –7 portable life support system and 
associated equipment.  The later Apollo missions used this configuration on the lunar surface.  The EVA surface 
duration per sortie was increased to 8 hours in this configuration. 
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Table 4-74 Weights of Historical Spacesuits under Gravitational Loadings 

Locale and Loading 
Total Mass 

[kg] 

Weight for 
Human 
Alone 

[N] 

Weight for 
Human 

Plus Space 
Suit 
[N] 

Percentage 
of Unen-

cumbered, 
Earth-
Normal 
Weight 

[%] 
Earth 70.0 686  100 
Moon 70.0 113  16.5 

Lunar Surface with Apollo A7L EMU 153.0  248 36.1 
Lunar Surface with Apollo A7LB EMU 160.7  260 37.9 
Lunar Surface with Shuttle EMU 205  332 48.4 

Mars 70.0 262  38.2 
Martian Surface with Apollo A7L EMU 153.0  572 83.4 
Martian Surface with Apollo A7LB EMU 160.7  601 87.5 
Martian Surface with Shuttle EMU 205  767 112 

The entire EVA system, including airlocks, spacesuits, tools, and vehicle interfaces, must also be designed 
to minimize the mission launch mass.  Thus, technology development is required.  The final design solution 
depends upon the mission architecture as well as the success of development efforts.  Several scenarios are 
described below that represent the best available assumptions with regard to EVA for planetary exploration 
missions. 

4.6.1 OPERATIONS DURING TRANSIT TO MARS 
On a Mars transit vehicle, EVA would likely be reserved for contingency only.  If EVA from the transit 

vehicle is minimal, then the transit vehicle airlock system should be as lightweight as possible and intrude into the 
crew habitat as minimally as possible.  Solutions that use an existing volume within the cabin that can be isolated 
and depressurized or a fabric, fold-up airlock stowed externally to the outer cabin wall are some possible minimum 
impact solutions to provide contingency EVA capability.  In an event, current EVA protocol requires at least two 
crewmembers at any time, so the minimum airlock should accommodate at least two crewmembers at a time.  
Thus, the minimum airlock internal volume is about 3.7 m³.  This corresponds to the volume of the current Shuttle 
airlock. 

4.6.2 MARTIAN SURFACE OPERATIONS 
Because the gravity on Mars is about twice that of the Moon and about a third of that on Earth, the overall 

mass of a Mars spacesuit is extremely critical.  A likely mission design to mitigate this problem is to reduce the 
standard EVA duration to 4 hours and plan to recharge the spacesuit consumables at midday.  Thus, to maintain 
the same time outside the vehicle during exploration, two 4-hour, or “half-day,” EVA sorties per workday could 
replace the more traditional 8-hour EVA sortie.  Assuming five workdays per week allows 520 half-day EVA 
sorties of two crewmembers per year without any allowance for holidays.  This is also the expected number of 
airlock cycles per year.  Each EVA sortie normally requires at least two crewmembers outside.  This strategy 
would be impossible on ISS because of the long prebreathe times required for the crewmembers to adjust from the 
101 kPa (14.7 psia) and 21% oxygen environment.  Using the recommended exploration atmosphere of 57 kPa 
(8.2 psia) and 34% oxygen (Norcross 2013) can reduce the prebreathe time to effectively zero for some suit 
operation pressures.  In other cases, it may at least reduce the time so it fits within other necessary activities such 
as suit checkout that would be conducted at 100% oxygen already.  EVA operations may initially be performed at 
an elevated suit pressure until prebreathe time is met, and then the suit pressure will be reduced for greater mobility 
and reduced leak rate. 
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One method of reducing EVA consumables is to use a radiator to reject thermal loads from the spacesuit 
backpack rather than rely solely on consuming water to reject thermal loads, as is the current practice in low-Earth 
orbit.  This could reduce cooling water usage to 0.19 kg/h from 0.57 kg/h, which is a typical value when a radiator 
is not used.  The calculation here assumes a human metabolic rate of 1.06 MJ/h (295 W).  Water, which remains 
within the spacesuit, also provides the thermal working fluid to transport heat from the astronaut’s skin to heat 
rejection equipment in the portable life support system (PLSS). 

Another concept, which would completely eliminate loss of water to the environment for cooling, is a 
cryogenic spacesuit backpack.  The cryogenic spacesuit backpack rejects thermal loads both to the environment, 
via a radiator, and to vaporize cryogenically-stored oxygen for metabolic consumption.  As above, water still 
provides the heat transport working fluid. 

Oxygen usage and losses during EVA depend on the technologies employed in the PLSS.  If a completely 
closed-loop system is used, oxygen is only consumed by metabolic activity and leakage.  Under such conditions, 
oxygen usage is 0.3 kg per 4-hour EVA sortie, or 0.076 kg/h.  If carbon dioxide generated while on EVA is stored 
by the PLSS and recycled once the crewmembers return to the vehicle actual oxygen loss is associated only with 
leakage.  Oxygen leakage alone accounts for a loss rate of 0.02 kg per 4-hour EVA sortie, or 0.005 kg/h.  If the 
spacesuit PLSS employs a swing bed carbon dioxide removal technology to reject carbon dioxide and water to the 
Martian environment, then some additional oxygen is lost as a sweep gas to aid the bed’s operation.  In this case, 
oxygen loss rates are 0.6 kg per 4-hour EVA sortie, or 0.15 kg/h.  If cryogenic oxygen is used for thermal control 
as well as breathing, the overall oxygen usage rates are 4.0 kg per 4-hour EVA sortie, or 1.0 kg/h. 

Normally flight rules require two exits to provide redundant means to enter and egress a vehicle.  If 
pressurized rovers are used, one exit would be dedicated to docking rovers while an airlock would support on-foot 
EVA operations.  As exits are only useful if coupled with a corresponding airlock, the contingency airlock for a 
secondary exit when another pressurized vehicle is not docked is often to depressurize the entire vehicle cabin. 

Although the hatch size increases in an environment with gravity, the required airlock volume remains 
constant.  A two-crewmember airlock has an empty volume of 4.25 m³.  During use, the free gas volume within 
the airlock is 3.7 m³ and two suited crewmembers fill the remaining volume.  Though not generally acceptable 
under current rules, a single person airlock has an empty volume of 1.02 m³ and a free gas volume of roughly 
0.89 m³.  About 10% of the free gas within the airlock is lost to space and not recovered by the airlock compression 
pump during depressurization.  These losses could be reduced to 5 % at the expense of additional time and power 
consumption for the airlock pump.  Other advanced concepts, however, may reduce the gas losses without 
corresponding time and power penalties. 

Table 4-75 summarizes the estimates above for EVA operations on the surface of the Moon.  All values 
are provided by personal communication with M. Rouen in 2001.  Losses in Table 4-75 denote mass that leaves 
the pressurized volume of the spacesuit and, therefore, does not return to the vehicle at the end of EVA operations.  
Consumption listed in Table 4-76, denotes usage of a commodity by the crewmember regardless of whether that 
commodity leaves the pressurized spacesuit volume or is retained within that volume and later recycled.  
McBarron, et al. (1993) provide overall values describing the metabolic loads and inputs for an EVA crewmember 
assuming an average metabolic rate of 1,055 kJ/CM-h (293 W) and a respiratory quotient of 0.90; See Table 4-76. 
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Table 4-75 Summary of Extravehicular Activity Values for Lunar Surface Operations 

      
Value Units low nominal high Reference 

Human Metabolic Rate 
During EVA 

MJ 
/CM-h  1.06  

1. Personal 
communication with M. 
Rouen in 2001 

W/CM  300  2. LAT2 (2007) 

EVA Crewmember Hours 
per Week 

CM-h 
/wk  80 80 3. High Mobility 

Scenario 

EVA Sorties 164 per Week Sorties 
/wk 7 10 14  

Cooling Water Losses 
(North & South Poles) 

kg 
/CM-h 0.25 0.3375 0.5  

Cooling Water Losses 
(Equator) 

kg 
/CM-h 0.4625 0.625 0.7625  

Oxygen Losses kg 
/CM-h 0.069 0.092 0.110  

Airlock Volume m³ 3.3 3.3 3.3  
Airlock Free-Gas Volume m³ 2.9 2.9 2.9  

Airlock Cycles per Week Cycles 
/wk 3.5 5 7  

Airlock Gas Losses 
per Cycle as a Percentage 
of Airlock Gas Volume 165 

% 5 10 10  

 

Table 4-76  Extravehicular Activity Metabolic Loads 

Parameter Units Rate References 
Oxygen Consumption kg/CM-h 0.075 (1) (1) McBarron, et al. 

(1993); metabolic 
rate of 293 W/CM 
and a respiratory 
quotient of 0.9. 

(2) MSIS (1995); a 
maximum value. 

(3) Personal 
communication 
with M. Rouen in 
2001 

Potable Water Consumption 166 kg/CM-h 0.24 (1, 2) 
Food Energy Consumption 167 MJ/CM-h 1.062 (3) 
Carbon Dioxide Production kg/CM-h 0.093 (1) 

Respiration and Perspiration Water Production kg/CM-h highly* 
variable 

Urine Production kg/CM-h highly 
variable* 

                                                           
164 Each EVA sortie assumes two crewmembers. 
165 As given, these values are as a percentage of the mass of gas occupying the free airlock volume when depressurization 

begins. 
166 For EVA sorties longer than 3 hours. 
167 This is the total energy expended, and thus consumed, per crewmember per hour of extravehicular activity. 
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4.6.3 LUNAR SURFACE OPERATIONS 
Future EVA scenarios on the lunar surface are likely to be similar to those described above for Mars, 

because lunar surface exploration is often cited as a precursor to Martian surface exploration missions.  However, 
due to lower gravity on the Moon, it is easier to extend the EVA sorties to 8 hours, thus saving time and airlock 
cycle gas losses.  However, radiant heat rejection would be a greater challenge during the lunar day. 

 

4.6.4 RECOMMENDED PREBREATHE INTERVALS FOR EVA 
4.6.4.1       DECOMPRESSION SICKNESS PREVENTION 

Decompression sickness takes place when the inert gas (generally nitrogen) that normally is 
dissolved in body tissues at one pressure forms a gas phase (“bubbles”) at a lower ambient 
pressure, when the tissues become supersaturated with nitrogen. [Powell, et al. (1993)] 

Decompression sickness (DCS) is an important consideration for mixed cabin atmospheres when EVAs are 
performed in lower-pressure space suits, and when changes in cabin pressure can occur as a result of planned 
activities and emergencies.  DCS symptoms can include pain (“the bends”), pulmonary manifestations (“the 
chokes”), skin manifestations, circulatory collapse, and neurological disorders (NASA (1995)).  A common 
approach for preventing or minimizing DCS is to prebreathe pure oxygen prior to depressurization to wash out 
nitrogen from body tissues.  Minimizing the risk of DCS and the operational impact of prebreathe protocols is 
one of the primary drivers for the recommended reduction in cabin pressure for surface habitats and rovers 
(Norcross 2013). 

The occurrence and severity of DCS has been found to correlate with the ratio of the final partial pressure of 
inert gas in equilibrium with body tissue to the final ambient total pressure.  This ratio, R (or TR), is known as 
the tissue ratio or bends ratio.  When the inert gas is nitrogen and the final ambient pressure is the space suit 
pressure, R can be expressed as follows: 

 
Suit

Tissue-N2  
P

p
R =       Equation 4-6 

 
The incidence of DCS, as well as venous gas emboli, increases with increasing R (see, for example, Horrigan, et 
al. (1993)).  In addition to the dependence on R, DCS has been found to depend on the duration at reduced 
pressure, and the degree of physical activity and ambulation at reduced pressure (Conkin, et al. (1996), Conkin 
and Powell (2001)).  Test data also suggest that at the same R-value, a higher space suit pressure will result in a 
lower probability of DCS (Conkin, et al. (1996)). 

During a pure-oxygen prebreathe, the elimination of nitrogen from body tissue follows an exponential decay 
curve with a tissue-dependent half-time, t1/2, related to the blood perfusion rate, inert gas diffusion rate, and inert 
gas solubility in the tissue (Conkin, et al. (1987)): 
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In terms of R value, 
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The initial nitrogen partial pressure in equilibrium with body tissue prior to prebreathing is most appropriately 
assumed equal to the alveolar nitrogen partial pressure, pAN2, that exists for the spacecraft cabin atmosphere.  In 
correlating the incidence of DCS against R, Conkin and coworkers (1987) have used the atmosphere nitrogen 
partial pressure instead of pAN2 to avoid the complexity of using the Alveolar Gas Equation during intermediate 
exposures.  These authors have also used a theoretical tissue type with a 360-minute half-time for modeling the 
dependence of DCS incidence on R. 

For any given spacecraft cabin atmosphere and space suit pressure, 
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   Equation 4-8 can be used calculate the prebreathe time necessary to achieve a final 
required R-value prior to EVA.  In establishing a bound on the atmosphere design space based on DCS 
prevention, the final required R-value and the maximum allowable prebreathe time must be established. 

4.6.4.2 FINAL R VALUE 

Current NASA ISS prebreathe protocols are based on a final R value of 1.65-1.68 after oxygen prebreathe (see 
Horrigan (1993), and NASA (2002, 2003)).  Actual operational values are frequently lower.  For surface-
exploration EVAs, DCS risks from mixed cabin atmospheres have not been established, nor has the acceptable 
level of DCS risk.  Higher physical loads imposed by partial gravity suggest higher DCS risk than in 
microgravity.  DCS symptoms must also be treated locally without the option for a quick return to Earth.  A final 
R-value of 1.3-1.4 (following prebreathe) has been suggested by Conkin (2004) as a reasonable starting point 
based on current knowledge. 

4.6.4.3 MAXIMUM PREBREATHE TIME 

Minimization of the prebreathe time is highly desirable in missions with frequent EVAs to maximize crew 
productivity.  An operational prebreathe of approximately 20 minutes is expected during space suit purge and 
checkout procedures.  A longer minimum prebreathe (up to 1 hour) may be required to denitrogenate the brain 
and spinal cord to guard against serious (Type II) DCS symptoms (Gernhardt (2004)).  A prebreathe time of 1 
hour is therefore assumed as a tentative upper bound for surface exploration EVAs. 

4.6.4.4 PREBREATHE BOUND 
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    Equation 4-8 was used to map curves of 
constant prebreathe time over the spacecraft cabin atmosphere pressure and oxygen concentration design space.  
Results are shown in Figure: 4-1- Figure: 4-4 for space suit pressures of 29.6 kPa (4.3 psia) and 41.4 kPa (6 
psia), and for final R-values of 1.3 and 1.4.  These results were calculated taking pN2-Tissue(0) equal to the 
cabin atmosphere nitrogen partial pressure, and using a tissue half-time of 360 minutes.  Curves are shown for 
prebreathe times ranging from 0 minutes to 240 minutes.  The 60-minute prebreathe curve (shown dashed and 
bolded) represents the assumed upper bound on prebreathe time.  The strong dependence on space suit pressure 
is evident by comparing Figure: 4-1and Figure: 4-2 with Figure: 4-3 and Figure: 4-4. 
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Figure: 4-1   Curves of constant EVA prebreathe time for a 29.6 kPa space suit with a final R-value of 
1.3.  Assumed upper bound on prebreathe time is 60 minutes. 
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Figure: 4-2   Curves of constant EVA prebreathe time for a 29.6 kPa space suit with a final R-value of 
1.4.  Assumed upper bound on prebreathe time is 60 minutes. 
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Figure: 4-3   Curves of constant EVA prebreathe time for a 41.4 kPa space suit with a final R-value of 
1.3.  Assumed upper bound on prebreathe time is 60 minutes. 
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Figure: 4-4    Curves of constant EVA prebreathe time for a 41.4 kPa space suit with a final R-value of 
1.4.  Assumed upper bound on prebreathe time is 60 minutes. 

 

4.6.4.5 ISS PREBREATHE PROTOCOLS168 

The International Space Station (ISS) uses four prebreathe protocols with the 29.7 kPa (4.30 psia, 222 
mmHg) Extravehicular Mobility Unit (EMU) suit. A different prebreathe protocol is used for the Russian Orlan 
suit since it has a higher operating pressure of 40.0 kPa, (5.80 psia, 300 mmHg). All of these protocols are 
significantly longer that those specified in the exploration maximum prebreathe time due to the much higher cabin 
pressure.  The ISS nominally operates at 101 kPa (14.7 psia) while exploration mission could be 55 kpa (8 psia).  
The selection of protocols for a given EVA depends on the mission objectives, DCS risk, crew timeline, and overall 
operational risks. The four prebreathe protocols for EMU are: 

Exercise – Exercise while breathing 100% O2 has been shown to eliminate N2 from the body tissues more 
quickly.  This protocol includes intense exercising for 10 minutes of an 80-minute mask prebreathe of 100% O2, 
with the cabin starting at 101 kPa and decompressing the airlock to 70.3 kPa over the 20 or more minutes required 
to don the suit. This is followed by a 60-minute in-suit prebreathe that is completed before the airlock begins its 
purge to vacuum. 

Airlock Campout – This is a 2-day protocol. On the first day, crewmembers preparing for EVA use a 
mask to prebreathe 100% O2 for 60 minutes while the pressure in the airlock decompresses from 101 kPa to 70.3 
kPa.  On the second day a 70-minute mask prebreathe of 100% O2 is performed 8 hours and 40 minutes after 70.3 
kPa pressure is reached in the airlock.  A final 50-minute in-suit prebreathe is performed to conclude this protocol. 

In-suit Light Exercise (ISLE) – For the ISLE protocol does not engage in a short bout of intense exercise 
but instead performs a longer bout of mild exercise in the EMU.  The ISLE prebreathe protocol shares many steps 
with the Exercise prebreathe protocol.  It differs in that 40 minutes are spent breathing 100% O2 by mask, followed 
by a 20-minute depressurization to 70.3 kPa. Once the crewmember has completed suit donning, there is a 

                                                           
168 NASA HIDH (2014) 
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repressurization to 101 kPa followed by in-suit arm and leg motions performed for 50 minutes with a minimum 
O2 consumption of 6.8 ml/kg-min. An additional 50 minutes of in-suit rest completes the prebreathe protocol 
followed by a 30-minute depressurization of the airlock to vacuum. 

4-hour In-Suit Prebreathe – Includes 4 hours of unbroken breathing 100% O2 at an airlock pressure above 
86.2 kPa. 

4.6.4.6       CONTINGENCY EVA 

A contingency EVA is one that is required to affect the safety of the vehicle and crew.  If time allows it 
a nominal prepreathe protocol should be used.  If the EVA preparation time needs to be minimized in order to 
assure crew safety a minimum of 2.5 hours of unbroken prebreathe with greater than 95% O2 is recommended at 
a vehicle pressure above 86.2 kPa.  A minimum prebreathe of 2.5 hours would reduce the estimated risk of 
incapaciting bends to less than 50% for an EVA up to 6 hours in duration.  This recommended time is very 
approximate and should be extended if possible.  Preparations for decompression treatment should be conducted 
as early as possible in case of an incident.  The flight surgeon needs to be consulted for recommended prebreathe 
protocol for any contingency EVA. (NASA, 2011) 

 POWER INTERFACE 

Within this manuscript, power enters analyses and modeling through use of a power-mass penalty.  Thus, 
information on power systems is provided under the description of infrastructure in Section 3.2. 

 RADIATION PROTECTION INTERFACE 

Radiation may impact numerous systems and is a critical issue for human exploration beyond LEO.  
Vehicle structure, including the primary structure, avionics, and propulsion system can provide varying degrees of 
protection just due to the nature of their mass (Duffield, 2010).  The Life Support System contains several items 
that could because of their high hydrogen content, act as effective radiation shields.  However, the most likely 
interaction for the Radiation Protection Interface is with the Water Subsystem and then only as a contingency 
source.  For operations in near Earth space, the spacecraft is likely to be designed to limit the lifetime radiation 
exposure of the crew.  While the initial activity from solar particle events enters from the direction of the Sun, the 
radiation field soon becomes effectively isotropic, so any effective radiation protection must provide a complete 
enclosure for the crew.  This radiation shelter may include the entire crew cabin.  On short duration missions, such 
as a lunar transit, such protection may only encompass a portion of the crew cabin, such as the sleeping quarters, 
due to the added mass associated with complete radiation shielding.  Perhaps something like a polyethylene 
garment could be worn, as suggested in the last line of Section 4.8. 

As implied above in Section 3.2.2 on infrastructure using inflatables, galactic cosmic radiation is much 
more difficult to stop.  For extended duration transit missions, all mass to protect against galactic cosmic radiation 
must come with the spacecraft.  On a planetary surface, local resources, such as regolith packed into “sandbags” 
or underground caverns might be used to protect against radiation.  Additionally, the carbon dioxide atmosphere 
of Mars, as well as the mass of the planet itself, provides some protection. 

The most effective way to shield a transport vehicle may be to develop materials that serve both as 
structural elements and as shields.  Polymeric materials, like polyethylene or polyetherimide, with high hydrogen 
content, perhaps sandwiched between fire resistant materials, would offer both structural strength and provide 
radiation shielding (Duffield 2010). 
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  THERMAL CONTROL INTERFACE 

Thermal control, in terms of its most direct impact on a spacecraft, maintains temperatures throughout 
the vehicle.  Or, from another perspective, thermal energy, or heat, transfers from regions of high temperature to 
regions of low temperature and the thermal control hardware regulates when and how thermal energy transfers 
from regions of high temperature within the spacecraft to regions of low temperature outside of the spacecraft so 
that all components within the spacecraft are maintained between their prescribed temperature limits.  As a 
distinguishing attribute, thermal control does not directly address heating associated with aerodynamic drag, 
although aerodynamic heating may impose greater thermal loads for the thermal control hardware, such as when 
heat conducts through the vehicle structure and into the crew cabin.  Heating generated by aerodynamic drag is 
managed by the thermal protection system. 

4.9.1 HEAT TRANSFER MECHANISMS 
In order to appreciate heat management technology some background in the underlying mechanisms is 

beneficial.  Thus, a brief discussion of heat transfer mechanisms follows.  Please see Incropera and DeWitt (1985), 
the primary reference for this section, for a more thorough discussion. 

Physically, heat transfers from high to low temperature via one of three distinct mechanisms.  These 
mechanisms are conduction, convection, and radiation, although heat transfer with a phase change is sometimes 
discussed separately and thus might be viewed as a fourth heat transfer mechanism169. 

4.9.1.1 CONDUCTION 

Conduction describes the transfer of heat within matter by diffusion or heat transfer through matter in the 
absence of macroscopic bulk motion of the matter.  An example is heat moving up the shaft of a metal spoon 
sitting in a heated pot on a stove.  The thermal energy, which is expressed as vibrational, rotational, and 
translational energy on atomic scales, is transferred from more-quickly vibrating atoms closer to the heated surface 
to less-quickly vibrating atoms further from the heated surface by interactions between adjacent atoms. 

4.9.1.2 CONVECTION 

Convection describes the transfer of heat in which matter acquires heat, by close molecular interaction, 
such as is described above for conduction, and then bulk motion of that matter carries both the matter and thermal 
energy away from its location of origin.  For example, heat may diffuse from hotter metal to an adjacent cooler 
moving fluid, and then the bulk motion of the moving fluid carries the heat away from its origin.  Likewise, the 
reverse process that of transferring heat from a hot moving fluid to a cooler solid, is also convection. 

4.9.1.3 RADIATION 

Radiant heat transfer is an exchange of heat between two surfaces without any intervening matter.  
Specifically, heat transfers from one surface to another surface that it can “see” simply by virtue of a temperature 
difference between the two surfaces.  In a perfect vacuum, which is approximated in free space, no intervening 
matter is present to convey heat from one surface to another by either conduction or convection, yet heat does 
transfer from a hotter surface to a cooler surface via electromagnetic waves in the mechanism called radiation.  
Warm spacecraft reject their thermal loads from relatively hot surfaces to relatively cold space by radiant heat 
transfer.  Please note that while radiation also describes the mechanism by which other forms of energy, such as 
solar particles and x-rays, pass through a vacuum, thermal radiation merely transfers heat and has no additional 
mutagenic effect on biological creatures exposed to it.  Also please note that while radiant transfer is generally of 
the greatest importance in a vacuum, radiant transfer occurs in all situations where two surfaces that can “see” 

                                                           
169 As noted below, phase change represents a special case of one of the three heat transfer mechanisms with the additional 

stipulation that one of the participating materials changes its physical state as a result of gaining or losing heat.  
However, even though phase change is not a unique mechanism, it is sometimes useful to distinguish heat transfer 
operations with phase change from other heat transfer operations. 
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each other are at different temperatures, even if, for example, a fluid fills the gap between those two surfaces and 
heat is transferred to or from the surfaces also by conduction and/or convection. 170 

4.9.1.4 HEAT TRANSFER WITH PHASE CHANGE 

Phase change describes heat transfer when matter accepts or discharges heat and changes its physical 
state.  Thus, though it is mentioned here separately, phase change is really a specialized case of one of the three 
heat transfer mechanisms in which matter changes state.  As an example, when water boils in a stovetop pan, liquid 
water approaches the bottom of the heated pan and leaves in the form of steam bubbles after accepting heat.  Thus, 
this is really heat transfer by convection with the matter undergoing bulk motion and changing its state from liquid 
to vapor upon accepting heat from the solid.  Likewise, phase change may occur in situations without bulk motion, 
such as when butter melts between two slices of hot bread, which is an example of conduction with phase change 
of a participating conducting material. 

4.9.2 THERMAL CONTROL ORGANIZATION 
Thermal control may be subdivided in several ways.  One organization classifies thermal control as either 

passive or active.  Passive thermal control hardware encourages or inhibits heat transfer as the heat passes directly 
through the hardware and eventually to the external environment, radiating from the vehicle’s entire external 
surface.  Active thermal control hardware acquires thermal loads near where the loads are generated and then 
transports those loads to some other portion of the vehicle before the loads are discharged to the environment by 
specifically designed radiating surfaces. 

4.9.2.1 PASSIVE AND ACTIVE THERMAL CONTROL 

Thermal control hardware may be classified as either passive or active.  As outlined below, passive 
thermal control hardware is generally integrated into the vehicle structure and retards the flow of thermal energy 
either in to or out of the vehicle.  Active thermal control hardware acquires thermal loads at or near their point of 
generation and transports those loads to the exterior of the vehicle for rejection. 

4.9.2.2 PASSIVE THERMAL CONTROL 

Passive thermal control hardware controls heat leakage from the vehicle and maintains cabin walls within 
prescribed temperature bounds.  Passive thermal control hardware is deployed within the vehicle structure and 
generally takes the form of insulation and resistive heaters.  Insulation impedes the transfer of heat in to and out 
of the vehicle, while resistive heaters allow active control of the wall temperatures when completely passive 
approaches are inadequate.  Because passive thermal control hardware is generally incorporated into the vehicle 
structure, it is included within mass penalties for the vehicle structure. 

                                                           
170 Within a pressurized crew cabin, though all three heat-transfer mechanisms are active, conduction and/or convection 

usually dominate compared to radiant exchange.  Physically, the driving potentials for conduction and convection heat 
transfer are proportional to the simple difference in temperature, while the driving potential for radiant heat transfer is 
proportional to the difference in temperature to the fourth power.  Within the crew cabin, coupled with appropriate 
transport properties, conduction and convection are greater in magnitude than corresponding radiant exchanges.  Thus, 
within a crew cabin, analysts often neglect radiant exchange with only a minor loss in accuracy.  As a cautionary note, 
there are situations, especially within terrestrial industry, in which radiant exchange is significant or dominates as the 
preferred heat transfer mechanism even when conduction and/or convection are also viable modes.  Please see Incropera 
and DeWitt (1985) for a more expansive discussion. 
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4.9.2.3 ACTIVE THERMAL CONTROL 

Active thermal control hardware removes excess thermal loads from within the vehicle to the environment 
by physically transporting those loads from their site of generation to an appropriate rejection site.  Active thermal 
control is comprised of three basic processes.  These are acquisition of thermal energy, transport of thermal energy, 
and rejection of thermal energy.  Acquisition hardware is comprised of fans, coldplates, and condensing heat 
exchangers for primary functionality.  Transport hardware can, theoretically, use any mechanism.  Historically for 
human spacecraft, transport relies on a liquid working fluid constrained within an enclosed flow channel, using 
the convection heat transfer mechanism to take loads from acquisition devices and to release loads to rejection 
devices. 171  Using this architecture, transport hardware consists of fluid tubes or pipes, pumps, accumulators, and 
valves.  The working fluid may be two-phase, but historically NASA has employed single-phase working fluids.  
Finally, rejection hardware may be radiators, devices that reject expendable materials carrying thermal loads, such 
as a flash evaporator or a sublimator, or phase change devices such as packages containing phase change materials.  
Thermal control infrastructure penalties generally represent active thermal control hardware. 

4.9.2.4 GENERAL THERMAL CONTROL ARCHITECTURE 

Active thermal control may be divided into internal thermal control and external thermal control.  In this 
arrangement, the internal thermal control system 172 (ITCS) initially acquires thermal loads from the crew cabin.  
The ITCS transports the thermal loads and releases them to a heat exchanger common to both the ITCS and the 
external thermal control system (ETCS). 173  The ETCS acquires thermal loads from the heat exchanger in common 
with the ITCS and from heat sources outside the crew cabin.  The ETCS transports the combined heat loads to the 
vehicle heat rejection devices. 

This architecture, using an ITCS with an ETCS, allows a non-toxic working fluid to circulate in all 
thermal control hardware located inside the crew cabin while allowing a fluid with greater heat transfer 
characteristics, to be used in thermal control hardware outside the crew cabin.  With NASA vehicles, such as the 
Shuttle Orbiter and International Space Station, the ITCS working fluid was water, which is non-toxic and has 
ideal properties for transporting thermal loads, except that it has a relatively high freezing point compared to the 
external environment in low-Earth orbit.  The Shuttle Orbiter and International Space Station both used more toxic 
working fluids in their ETCS that have lower freezing point temperatures.  The Shuttle Orbiter used Freon 21 
while International Space Station relies on anhydrous liquid ammonia. 

While this architecture, using an ITCS with an ETCS, allows use of more toxic, freeze-resistant working 
fluids in the ETCS while circulating a non-toxic fluid in the ITCS, this approach is more complex than a single 
fluid system.  In particular, a thermal control system using both an ITCS and an ETCS has the added mass of the 
heat exchanger common to the ITCS and ETCS plus the added mass of an additional pump for the additional loop.  
Noting that both the Shuttle Orbiter and International Space Station use two ITCS and two ETCS loops, for 
redundancy, this arrangement actually adds two extra heat exchangers and two extra pump packages.  Further, 
while the ITCS and ETCS loops are cross-linked or plumbed in a manner that any heat load may be acquired and 
rejected by either of the two loops serving a particular location in the spacecraft, loss of either an ITCS loop or an 
ETCS loop degrades the overall heat transport and rejection capabilities of the thermal control system.  Thus, the 
additional inherent complexity may actually reduce overall system reliability. 

                                                           
171 It is possible to envision thermal transport using either conduction or radiant heat transfer.  For short distances, relatively 

small thermal loads, or even highly temperature-tolerant equipment, conduction via solid material pathways to the 
exterior of the vehicle is possible.  In fact, passive thermal control uses conduction as its transport mechanism through 
the vehicle structure.  Radiant transport mechanisms are also possible, but less likely, within a vehicle because 
convective heat transfer within a working fluid is generally more efficient for relatively small temperature differences 
associated with temperature variations within a vehicle than is radiant heat transfer. 

172 Likewise, this may be designated as the “internal thermal control subsystem.” 
173 At assembly complete, International Space Station also uses the terminology “internal thermal control system” for its 

corresponding water coolant loops.  However, the corresponding International Space Station “external thermal control 
system” is referred to as the “external active thermal control system” (EATCS).  Combined, the ITCS and EATCS are 
the “active thermal control system” (ATCS). 
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4.9.2.5 INTERNAL THERMAL CONTROL SYSTEM 

The internal thermal control system (ITCS) acquires thermal loads from thermal acquisition sites within 
the crew cabin and transports those loads to a heat exchanger in contact with the ETCS.  The ITCS acquires thermal 
loads through specified interfaces.  These interfaces are usually coldplates, where the heat loads are cooled by 
conduction through the hardware’s external structure, or heat exchangers, where the heat loads are initially cooled 
by convection to a working fluid.  In the second case, the most common working fluid within a crew cabin is the 
enclosed atmosphere because many heat loads release their waste heat to the cabin atmosphere either by convection 
or radiant transfer.  Gas-liquid heat exchangers transfer the atmospheric heat loads to the ITCS. 

Cabin atmospheric thermal loads are removed by the gas-liquid heat exchanger through two approaches.  
Sensible heat is released from cabin atmospheric gases by convection to the gas-liquid heat exchanger.  Latent 
heat is released by condensing water vapor, also called humidity, from the cabin atmospheric gases, removing both 
humidity and thermal energy by convection with phase change. 

Though removal of sensible and latent thermal loads from the cabin atmosphere is a necessary function, 
because the cabin atmospheric gases and extracted condensate are involved in this process, it is possible that the 
cabin condensing heat exchanger may organizationally be grouped in whole or in part outside of the Thermal 
Subsystem even though the underlying processes remove heat.  For completeness, here the condensing heat 
exchanger is grouped with the Thermal Subsystem. 

4.9.2.6 CABIN ATMOSPHERIC THERMAL LOADS 

The cabin has several types of thermal loads that get applied to the atmosphere.  The most direct type 
would be forced air convection that would be applied by an electronics box that contains an internal cooling fan.  
Some passive devices, such as sensors or control valves, lose their heat via conduction to cabin structure.  Some 
equipment and the crew reject heat via low speed convection and radiation to the cabin surfaces.  In space natural 
convection is nonexistent as it depends on a contribution by gravity.  Numerous commercial electronics packages 
depend on the presence of natural convection in order to maintain their component temperatures.  Additionally the 
surfaces of any powered device need to be maintained below touch temperature limits174 (NASA, 2009) in order 
for the crew to be able to safely touch the device.  Due to these factors extra effort is required by the provider to 
show that the equipment will not fail thermally in space.  This usually is a combination of analysis and properly 
designed testing.  Since the absence of gravity can only be simulated for a few seconds in a specially designed 
aircraft trajectory, most researchers try show acceptance by analysis. 

 

4.9.2.7 EXTERNAL THERMAL CONTROL SYSTEM 

The external thermal control system (ETCS) acquires thermal loads from the ITCS and from thermal 
acquisition sites outside of the crew cabin.  Because the equipment outside of the crew cabin is almost universally 
in an unpressurized environment, thermal acquisition interfaces are almost universally coldplates.  The ETCS 
rejects thermal loads to the environment using specified heat rejection devices, such as radiators, phase change 
devices, and devices that reject expendable materials carrying thermal loads.  Mixing warm and cooled working 
fluid in the return line adjusts the temperature of the ETCS working fluid returning from the heat rejection suite to 
a prescribed set-point temperature.  While the heat-rejection suite thermally cools working fluid, warm working 
fluid is routed around the heat rejection suite using a flow bypass as necessary to meet the set-point temperature 
for the ETCS heat acquisition devices. 

Figure: 4-5 illustrates the interrelationship between the various component definitions for the ATCS.  The 
ITCS, denoted in black with plain type, acquires thermal loads within the crew cabin and rejects those thermal 
loads to the ETCS.  The ETCS, denoted in green with italicized type, acquires thermal loads from the ITCS and 

                                                           
174 The touch temperature limit in SSP 57000 is listed as 120°F.  At this hardware temperature there is no problem with the 

crew touch temperature.  At higher temperature an analysis would need to be performed based on the procedure in 
NASA HIDH to determine if the hardware is safe to touch.  This analysis depends on the hardware temperature, material 
and contact time. 
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equipment outside of the crew cabin and rejects those thermal loads to the environment.

    External Thermal Control System (ETCS)

    Internal Thermal Control System (ITCS)

Cabin Cold Plates

Other Heat Exchangers

Condensing Heat Exchangers

Pump Package
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External Equipment Heat Loads

 

Figure: 4-5  Active Thermal Control System component definitions. 
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4.9.3 THERMAL CONTROL TECHNOLOGY 
4.9.3.1 HISTORICAL THERMAL CONTROL APPROACHES 

While all NASA human-rated vehicles to date have used thermal control hardware to control the crew 
cabin atmospheric temperature and humidity, recent concerns over safety prohibit all but the most recent designs.  
In particular, some older spacecraft, such as Apollo, used a mixture of ethylene glycol with water as a working 
fluid within an active thermal control system loop that entered the crew cabin.  Recent flight rules strongly advise 
against using ethylene glycol in any application within a vehicle in which a crewmember may contact it.  Thus, 
the discussion of historical thermal control approaches is limited to designs for the Shuttle Orbiter and the 
International Space Station. 
4.9.3.1.1 SHUTTLE THERMAL CONTROL 

Figure: 4-6 shows the ordering of components for one of two ETCS loops in a Shuttle Orbiter.  A 
mechanical pump package, with two identical units plumbed in parallel, drives the single-phase Freon 21 working 
fluid.  For this application, one pump is active and the second is a spare.  The accumulator sets the low pressure 
for the fluid loop.  When the working fluid contracts, the accumulator adds fluid, and when the working fluid 
expands, the accumulator stores any excess fluid.  Because even liquid material properties are not truly invariant 
to temperature variations, the accumulator most often compensates for working fluid density variations associated 
with temperature changes. 

The Shuttle is designed to reject heat through several means depending on the mission segment.  On the 
launch pad and after the ground crew can make connections following landing, the ETCS rejects heat to ground 
facilities through the ground service equipment heat exchanger.  On launch, re-entry, and when necessary on-orbit, 
the flash evaporator allows excess water to evaporate from the outside of the ETCS working fluid line, expelling 
the vapor, with its waste heat, to space.  Upon re-entry, when the external atmospheric pressure is too great to 
operate the flash evaporator efficiently, the ammonia boiler evaporates anhydrous ammonia to cool the ETCS 
working fluid lines, again expelling the vapor to the environment. 175  The radiators, which are mounted on the 
inside of payload bay doors, reject heat by radiant transfer to space while the Shuttle is on-orbit.  Shuttle controls 
the ETCS working fluid temperature from the radiators with a bypass loop as depicted.  Varying internal flowrates 
or expendable fluid consumption rates controls the other heat rejection devices. 

Heat is gathered by the ETCS from many sites throughout the vehicle.  Those listed as heat exchanger 
are liquid/liquid devices where the second operating fluid is the coolant for the attached hardware.  The 
water/Freon interchanger is the common ITCS/ETCS heat exchanger, while the oxygen restrictor is a heat 
exchanger between the ETCS loop and the pressurized cabin oxygen supply. 

                                                           
175 In practice, the ammonia boiler was rarely used as designed.  Rather, just before the radiators are removed from service 

by closing the payload bay doors, the Shuttle flies an attitude so that the radiators face deep space.  This maneuver fills 
the radiator panels with chilled Freon 21 and chills the metallic panels as well.  Following this maneuver, the radiators 
are completely bypassed and the flash evaporator rejects the entire vehicle thermal load.  When the flash evaporator 
ceases operations high in the atmosphere, flow through the now-stowed radiators is re-established, releasing the 
previously cooled working fluid.  This approach provides sufficient cooling from when the flash evaporator ceases 
operations until about 15 minutes after touch down.  If all proceeds on schedule, the ground-cooling cart that interfaces 
with the ground service equipment heat exchanger is operational by 15 minutes after touch down, and the ammonia 
boiler is not used.  The ammonia boiler is provided on each mission as a contingency for heat rejection, and would 
provide primary cooling if the ground-cooling cart was not available in time or the Shuttle executed a launch abort. 
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Figure: 4-6    Active Thermal Control System hardware for the shuttle orbiter. 

Figure: 4-6 presents one of two Freon 21 loops in the Shuttle Orbiter ETCS.  Coolant flow is clockwise.  
Because the ETCS loops run through an unpressurized portion of the vehicle, the heat exchangers are integral with 
the devices they cool.  The Water/Freon Interchanger and the Oxygen Restrictor are heat exchangers between the 
ITCS water loop and the pressurized cabin oxygen supply, respectively.  The Accumulator maintains pressure 
within the flow loop.  The Radiator, Ground Service Equipment Heat Exchanger, Ammonia Boiler, and Flash 
Evaporator are all heat rejection devices. 
4.9.3.1.2 INTERNATIONAL SPACE STATION THERMAL CONTROL 

The external active thermal control system (EATCS) for ISS at Assembly Complete is very similar to the 
architectures presented above.  The ISS EATCS uses single-phase, anhydrous liquid ammonia as its working fluid, 
although the corresponding ITCS uses water.  The radiators are mounted on booms that connect to the P1 and 
S1 176 truss segments through a thermal radiator rotary joint (TRRJ).  The TRRJs orient the radiator panels so that 
they display their thinnest face, their “edges,” to the Sun, allowing their radiant face-sheets to be exposed only to 
relatively cooler environments.177  While not depicted in Figure: 4-7 , many of the fine details are similar to those 
in earlier diagrams. 
                                                           
176 The ISS truss segments are numbered in ascending order from the center of the vehicle.  The S0, “starboard zero,” truss 

segment forms the base for the other truss segments and connects directly to the other ISS modules through the U. S. 
Laboratory.  The first starboard segment outboard of S0 is S1, while the first port segment outboard is P1, or “port one.” 

177 In rare situations, the TRRJs are not able to completely orient the radiator edges at the Sun, but this case is not common 
and only occurs for brief periods. 
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Figure: 4-7  External Active Thermal Control System hardware for International Space Station at 
assembly complete. 

As noted by the arrows in Figure: 4-7, ammonia flows from radiators to the common ITCS/EATCS heat 
exchanger and then to the warmer thermal loads associated with electronics mounted on coldplates.  Each Thermal 
Radiator Rotary Joint (TRRJ) rotates to position the radiator panels so that they face anti-Sun, or “edge-on” to the 
Sun.  The bulk of the EATCS is located on truss segments S0, S1, and P1. 
4.9.3.1.3 ADVANCED THERMAL CONTROL APPROACHES 

There are many concepts to increase the efficiency of thermal control hardware, and several of the more 
common ideas are summarized in the paragraphs below.  Please, note, however, that this is not an exhaustive 
discussion and other viable approaches exist. 

As noted above, the active thermal control system (ATCS) is the summation of both the ITCS and 
ETCS .178  Further, dividing the ATCS into two loops when, physically, only one loop is required, adds inefficiency 
to the process of removing thermal loads from the vehicle even when there are benefits from this approach.  An 
alternate approach employs only a single ATCS loop in place of each ITCS / ETCS combination.  The working 
fluid requirements are more stringent because the working fluid may not be a significant hazard to the crew if 
leaked into the crew cabin, nor may it be overly susceptible to freezing when flowing through heat rejection 
equipment.  While not employed currently, such systems are under development and the concept is mentioned here 
as background. 

Another possible advanced concept is a two-phase thermal control working fluid.  Thermal control loops 
using single-phase working fluids rely on the heat capacity of the working fluid to accept and transport thermal 
loads.  However, single-phase working fluids are limiting in practice because acquiring a thermal load raises the 
temperature of the working fluid, so hardware downstream must reject their thermal loads to a working fluid at a 
higher temperature than hardware upstream, and this concern can lead to other inefficiencies.  Secondly, a single-
phase working fluid generally can acquire less heat over its entire liquid temperature range than is required to 
change the phase of the same mass of working fluid from a liquid to a vapor.  If the thermal control working fluid 

                                                           
178 Or the “External Active Thermal Control System” (EATCS) when using International Space Station nomenclature. 
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is allowed to vaporize as it acquires thermal loads, the working fluid remains at a constant temperature and actually 
less fluid mass is required to carry the same thermal load.  Issues associated with two-phase flows under non-
terrestrial gravitational fields remain as challenges to this approach so far. 

Heat pumps also offer promise as advanced thermal control technologies.  While terrestrial heat pumps 
move heat either into or out of a volume, heat pumps as part of an advanced thermal control system move heat 
from the vehicle to the environment only.  Specifically, heat pumps use work, either thermal or mechanical, to 
raise the temperature of waste heat loads so as to increase the ease of rejecting those loads by radiant heat transfer.  
While heat pumps add hardware and use power, the increased temperature of the heat load for radiant emission 
from the vehicle decreases the required radiator size so that the overall system may be less massive than a thermal 
control system without a heat pump, especially in a hot environment. 

4.9.4 RADIANT ENERGY BALANCE 
Heat transfer is a broad topic and any in depth treatment is beyond the scope of this document.  See, for 

example, a heat transfer text such as Incropera and DeWitt (1985) for a more complete introduction.  However, 
several definitions and assumptions are common when analyzing radiant heat transfer for space applications within 
NASA.  Except as specifically noted, the development below follows Incropera and DeWitt (1985). 

In general, heat emitted by a perfectly black body, qbb [W], may be described by the Stefan-Boltzmann 
equation. 

qbb = σ A T4 Equation 4-9 

where σ is the Stefan-Boltzmann constant with a value of 5.67 × 10 –8 W/(m²•K4), A is the body’s surface area 
[m²], and T is the body’s absolute temperature [K].  A black body is a perfect emitter and its emittance is a 
function only of its temperature once its geometry is fixed. 

In practice, most real surfaces are not perfect emitters, and their surface emittance may be described as 
some fraction of the emittance from a perfectly black body.  For a non-ideal body whose emittance fraction is 
constant, a slightly modified relation applies; 

qe = σ ε A T4 Equation 4-10 

qe is emittance [W], and ε is the emissivity or the fraction of the surface’s actual emittance compared to its ideal 
or black body emittance at its current absolute temperature, T.  Alternately, ε is unity only for an ideal or black 
body. 

As noted earlier, radiant exchange of thermal energy does not depend on intervening matter for transfer.  
Rather, radiant exchange is possible between any two surfaces with a view of each other.  Physically, according 
to one theory, thermal energy transfers between the surfaces via electromagnetic waves. 179  According to classic 
physics, thermal radiation, which is a subset of a broader phenomenon known as electromagnetic radiation, varies 
between wavelengths of 0.1 and 100 μm.  Visible light, according to the human eye, is confined to a range varying 
from 0.40 to 0.70 μm.  In addition to visible radiation, classical physics defines thermal radiation at wavelengths 
less than 0.40 μm as also being ultraviolet radiation, and thermal radiation at wavelengths greater than 0.70 μm is 
also infrared radiation.  As context, electromagnetic radiation at wavelengths less than 0.1 μm is classified, 
depending on its wavelength, as ultraviolet radiation,180 x-rays, or gamma rays.  Electromagnetic radiation at 
wavelengths immediately greater than 100 μm is classified as microwaves. 

When thermal radiation strikes a solid object, it may be absorbed, reflected from the surface, or 
transmitted through the object.  If the surface is opaque to the incident radiation, transmittance is zero and only 
absorbance or reflectance is possible. 

α + ρ = 1 Equation 4-11 

                                                           
179 Alternate theories describe the transfer via photons or quanta, but the image of an electromagnetic wave is most 

applicable to the current discussion. 
180 Ultraviolet radiation varies from 0.01 to 0.40 μm, and so overlaps the range classified as thermal radiation. 
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where α is the absorptivity and ρ is the reflectivity.  For an ideal or black body, reflectivity is zero and 
absorptivity is unity. 

At any given wavelength, λ, according to Kirchhoff’s Law, absorptivity and emissivity are equal for a 
particular surface if (1) the incident irradiation is invariant with respect to direction, or diffuse, and (2) the surface 
properties are invariant with respect to direction, or diffuse. 

αλ = ελ  Equation 4-12 

Additionally, if (3) the incident irradiation is diffuse and if (4) the surface properties, the absorptivity and 
emissivity, are independent of wavelength, λ, the surface is called a gray surface. 

α = ε  Equation 4-13 

While most real surfaces do not abide by this final requirement to qualify as gray surfaces, many are 
effectively gray over some subset of the range of thermal radiation.  At Johnson Space Center, two thermal 
radiation sub ranges are often defined for radiant transfer calculations (Conger and Clark, 1997).  Thermal 
irradiation between 0.25 μm and 2.5 μm, inclusive, is designated as solar thermal radiation (AZ Technology, 
1993), while thermal irradiation above 2.5 μm is designated as infrared thermal radiation.  Over each of these sub 
ranges, material surface properties are assumed gray. 

αs = εs  
αir = εir  Equation 4-14 

where the subscript “s” denotes surface properties over the range of solar thermal radiation and the subscript “ir” 
denotes surface properties over the range of infrared thermal radiation.  This does not imply that αs equals αir or 
that εs is equal to εir.  This approach effectively considers Equation 4-9 applicable in a piecewise manner over 
two sub ranges for thermal radiation. 

Physically, except during re-entry or similar operations with extremely high aerodynamic drag, the 
surface temperatures of spacecraft in space do not approach the range where surfaces emit in the solar range.  Thus, 
surface emissions from spacecraft, planetary surfaces, and other non-glowing physical bodies have surface 
properties as defined by the second relation in Equation 4-10.  Irradiation coming from the Sun, or reflected 
irradiation that originated from the Sun, however, emit in the solar range.  Thus, incident or reflected irradiation 
from the Sun uses surface properties as defined by the first relation in Equation 4-11. 

From the perspective of a spacecraft, which emits infrared thermal radiation but likewise absorbs incident 
solar thermal radiation, it is meaningful to define the εir, for both infrared thermal emittance and absorptivity, and 
αs, for solar thermal absorptivity. 

4.9.5 THERMAL CONTROL VALUES 
This section provides values necessary to estimate heat transfer both within a spacecraft and between a 

spacecraft and its environment.  In fact, many values below may apply both to thermal control within a spacecraft 
as well as to heat rejection from the spacecraft. 

Table 4-77 presents solar absorptivities and infrared emissivities for several common aerospace structural 
materials.  The end-of-life properties reflect changes associated with external usage in near-Earth space, and are 
not applicable within the crew cabin.  While surfaces within the crew cabin certainly wear, aging mechanisms 
differ from those in the vacuum of space or even on the Martian surface.  Thus, as a first approximation emissivities 
for new materials apply even for a used interior. 
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Table 4-77 Surface Optical Properties for Common Exterior Space Material 

 New End-of-Life 181  

Material αs εir αs εir References 
Silverized Teflon 0.07 0.80 0.14 0.80 From Conger and Clark 

(1997) unless otherwise 
noted. Aluminized Teflon 0.12 0.80 0.20 0.80 

Ortho Fabric 182 0.18 0.84   
Beta Cloth 0.26 0.90   
A276 White Paint 0.28 0.87 0.36 0.90 
Clear Anodized Aluminum 0.38 0.83 0.58 0.79 
Gold Anodized Aluminum 0.55 0.81 0.63 0.81 
Black Anodized Aluminum 0.81 0.88 0.84 0.79 
Alodine Aluminum 0.45 0.35   
Bare Stainless Steel 0.42 0.11   
Sand-Blasted Stainless Steel 0.58 0.38   
Bare Titanium 0.52 0.12   
Tiodized Titanium 0.82 0.51   

Within the crew cabin, thermal considerations are dictated by two concerns.  The first is crew comfort 
and maintaining equipment within its thermal bounds.  The second concern is to maintain humidity within an 
acceptable range.  If the overall cabin atmospheric temperature drops below the local dew-point temperature, water 
vapor is allowed to condense.  Because liquid water poses a significant hazard to electronics especially in 
weightless situations, maintaining cabin atmospheric and humidity within prescribed limits is important.  
Table 4-78 presents applicable thermal limits for crew cabins. 

Table 4-78 Crew Cabin Thermal Ranges 

  Assumptions  
Parameter Units lower nominal upper Reference 
Air Temperature 183 K 291.15  300.15 NASA HIDH (2014); 

dew points calculated at 
the given air temperature 
and RH. 

Dew-Point Temperature K 271  295 
Relative Humidity % 25  75 
Ventilation m/s 0.076  0.6096 

Transport properties for several common thermal control working fluids are tabulated in Table 4-79 at 
likely operating temperatures.  These values support basic thermal loop energy balances. 

                                                           
181 These values apply to external applications only because aging and wear mechanisms within the crew cabin differ 

considerably from external aging and wear mechanisms.  As a first approximation, surface properties for materials 
within the crew cabin do not change with time. 

182 The exterior fabric on the extravehicular mobility unit. 
183 The cabin “dry bulb” atmospheric temperature. 
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Table 4-79  Properties for Common Thermal Control Loop Working Fluids 

  Temperature = 280.0 K Temperature = 297.0 K Temperature = 300.0 K  

Fluid Hazards 
Density 
[kg/m³] 

Specific 
Heat 

[kJ/kg•K] 
Viscosity 
[kg/m•s] 

Density 
[kg/m³] 

Specific 
Heat 

[kJ/kg•K] 
Viscosity 
[kg/m•s] 

Density 
[kg/m³] 

Specific 
Heat 

[kJ/kg•K] 
Viscosity 
[kg/m•s] References 

Water  1,002.08 4.204 0.00148    998.35 4.187 0.00083 From Schoppa (1997) unless 
noted otherwise. 
Propylene glycol/water 
Properties from 
Dowfrost.com 
 
Glycerine/water properties 
from  
Lienhard (1981) 

30 % Ethylene Glycol 
/ 70 % Water Irritant 1,042.15 3.741 0.00311    1,033.34 3.788 0.00176 

60 % Ethylene Glycol 
/ 40 % Water Irritant 1,083.84 3.130 0.00796    1,071.70 3.216 0.00417 

50 % Propylene Glycol 
/ 50 % Water     1042 3.54 .0055    

40 % Glycerin 
/ 60 % Water     1097 3.015 0.0029    

Fluorinert 72  1,722.12 1.025 0.00117    1,669.92 1.056 0.00092 
Hydrofluoroether 
HFE-7100  1,522.76 1.147 0.00088    1,477.38 1.187 0.00071 

Ammonia (liquid) Toxic 628.20 4.679 0.000232    600.46 4.854 0.00021 
D Limonene Flammable    847.5 2.05 0.00091    
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Table 4-80 and Table 4-81 provide appropriate thermodynamic values to compute energy balances of 
phase-change materials for representative materials.  Of the materials available, both here and more generally, 
water requires the greatest heat input for the least mass and is the “best” phase-change material available, 
although the temperatures at which it transitions from one phase to the next sometimes prohibits its use.  While 
the temperature at which a liquid boils varies directly with pressure, melting point temperatures are effectively 
invariant with pressure for applications likely to see use in space flight. 

 

Table 4-80  Thermodynamic Properties of Common Thermal Control Phase-Change Materials for 
Liquid-Vapor Transitions 

Material Formula 

Liquid 
Density 
[kg/m³] 

Saturation 
Pressure 

[kPa] 

Saturation 
Temper-

ature 
[K] 

Heat of 
Vapori-
zation 
[kJ/kg] Reference 

Ammonia NH3 702.2 (1) 40.7 (1) 223.2 (1) 1,425.8 (1) (1) Howell and Buckius 
(1987)   690.1 (1) 71.6 (1) 233.2 (1) 1,392.5 (1) 

  677.5 (1) 119.5 (1) 243.2 (1) 1,361.1 (1) 
Water H2O 1,000 (1) 0.61 (1) 273.2 (1) 2,500.0 (1) 
  1,000 (1) 1.23 (1) 283.2 (1) 2,478.4 (1) 
  998 (1) 2.34 (1) 293.2 (1) 2,455.0 (1) 

 

Table 4-81  Thermodynamic Properties of Common Thermal Control Phase-Change Materials for 
Solid-Liquid Transitions 

Material Formula 

Solid 
Density 
[kg/m³] 

Liquid 
Density 
at 293.2 

K 
[kg/m³] 

Melting 
Temper-

ature 
[K] 

Heat of 
Fusion 
[kJ/kg] References 

Water H2O 920 (1) 998 (2) 273.2 (3) 333.5 (3) (1) Incropera and DeWitt 
(1985) 

(2) Howell and Buckius 
(1987) 

(3) Weast and Astle (1979) 
(4) Humphries and Griggs 

(1977) 

Waxes 
(Paraffin)      

n-Dodecane C12H26  748.7 (3) 263.6 (4) 210.5 (4) 
n-Tetradecane C14H30  762.8 (3) 279.1 (4) 229.9 (4) 
n-Hexadecane C16H34  773.3 (3) 291.4 (4) 228.9 (4) 
n-Octadecane 
184 C18H38  776.8 (3) 301.4 (4) 243.5 (4) 

 

 CREW HEALTHCARE 

Qualitative impact of the challenges for designers of medical care systems are complex.  The health care 
system can’t look like its Earth counterpart because of the effects of gravity as well as mass, power, volume, and 
crewtime restrictions that are certain to be levied on the system.  It could be argued that the medical system has 
been minimal to this point and there’s been little need to make it more inclusive, but as missions move farther 
from earth and have longer durations, the likelihood of necessary medical intervention becomes greater.  Consider 
the possible illnesses and injuries divided into three classes (Table 4-82).  Since treatment in Class I is unlikely to 

                                                           
184 The liquid density for n-octadecane is evaluated at 28 °C. 
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have a large impact on life support commodities and Class III treatment might be prohibitively expensive, the 
therapies likely to impact life support are those therapies in response to Class II illnesses and injuries. 

Table 4-82   Classification of Illnesses and Injuries in Healthcare (Houtchens, 1993) 

Characteristics Examples Response 
   
Class I   
Mild Symptoms Gastrointestinal Distress 

Self Care 

Effects Performance Minimally Headache 
No Threat To Life Mild Ulcer 
Prognosis Is Self-Limited Laceration of Abrasion 
 Sprains and Strains 
Class II  

 Urinary Infection or 
Inflammation 

 Respiratory Irritation 

 Allergy, Conjunctivitis, or, 
Dermatitis 

  

Moderate To Severe Symptoms  

Prompt adequate diagnosis and 
treatment 

Marked Effect On Performance DCS 
Potentially Life Threatening Air Embolism 
Could Be Protracted Arrhythmia 
 Partial Circulatory Blockage 
 Ulcer 
 Respiratory Distress 
 Toxic Inhalation Exposure 
 Chemical burns 
 Stones 
 Diverticulitis 

 
 Appendicitis  
Class III   
  

Evaluate Promptly and 
Transport or; 

Take Measures to Store, 
Return, or Destroy the Body 

Symptoms Immediate And 
Severe 

Explosive Decompression 

Incapacitating Complicated  Heart 
Malfunction 

Life Threatening If Not 
Immediately Fatal 

Overwhelming Infection 

Crewmember Won’t Survive If 
Not Treated Promptly 

Crush Injury 

 Brain Surgery 
 Burn > 40% of Body 

Surface Area 
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The question from a life support perspective is how do medical activities affect ECLSS commodities?  

Certainly some of the issues in Table 4-82 have been addressed by planners, as the EVA suit is required to have 
the capability of a onetime increase in pressure to 156.5 kPa for treatment of decompression sickness.  Conceivably 
the suit could also act as an oxygen delivery device without increasing the cabin oxygen percentage, but such an 
arrangement would present obstacles for such activities as surgical procedures, intravenous therapy, or certain 
kinds of diagnostic testing.  A rebreathing mask or a valved non-rebreathing mask might aide in oxygen delivery 
without significantly increasing cabin oxygen levels (Yam, 1993). 

Medical care is mentioned in NASA-STD-3001 (2015) and five levels of care are identified. The levels 
of care are defined as the level and type of care that can be provided by an individual. Conversely, standard of care 
does not depend on the medical capabilities of the individual but on current clinical practices. Level of care zero 
has a low need for medical care for unplanned and unforeseen injury. Level of care one uses preventative medicine 
to mitigate medical maladies. Medical care in this case includes the materials provided by a routine first aid kit. 
Level of care two involves more robust medical attention to treat major illnesses using medications or equipment. 
Short mission duration does not require the equipment necessary to monitor long-term effects due to micro-gravity. 
Level of care three is a thicker layer of the previous level: sick, injured, or deconditioned crewmembers will require 
immediate and long lasting life-saving care to withstand limited advanced life support and limited consumables. 

The Lunar and Mars Sortie and Outpost missions would fall under “Level of Care Four”, which is listed 
as a moderate level of risk for medical issues (mission length from 30 days to 210 days).  Preventative measures 
are still being stressed at this level, but intervention strategies should be available to reduce risk to an acceptable 
level. Medical capabilities will be limited because of limited ability to rapidly return to Earth in the event of a 
major crisis.  Strategies to limit risk include increasing the advanced care in the form of medications, equipment, 
training, or consumables over and above previous levels.  It is the level of consumables that will most affect life 
support and thus is an area where further definition is desirable.  The following example may be used as a starting 
point: (and Table 4-84). 
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Table 4-83  Medical Hardware and Stowage - Lunar Outpost 

 
Item Mass, kg Volume, m3 Development 

Concept 
Medical System 136 1.50 (similar to ISS ISO rack) Program Provided 

Telemedicine 
Workstation 

22.7 Technology development 

Contaminant Cleanup 
Kit 

 4.5 COTS 

Portable Imager 
(Ultrasound) 

 6.8 COTS 

Advanced Life 
Support/Trauma 
Stabilization Kit 

 11.3 Modified COTS 

Medical Procedure Kit 
---Dental 

---Laceration repair 
---Acute Care pack 

 9.1 COTS 

Environmental Hardware 
---Total Organic Carbon 

Analyzer 
---Volatile Organic 

Analyzer 
---Radiation Detection 

System 
---Compound Specific 

Analyzer 
---Microbiology 

Analyzer 
---Dust Monitor 

---Acoustic Monitoring 
---Hearing Protection 

Device 

 45.4 Based on ISS hardware, technology development will 
be necessary for miniaturization and better reliability. 

Contingency Breathing 
Apparatus (Possibly 

portable) 

 9.1 Modified COTS 

Other: Biomedical 
Sensors, Assisted 
Procedure Device, 

Medical Grade Water 
Generation, Closed Loop 

Oxygen 
Concentrator/Delivery 

System 

   Technology Development 
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Table 4-84  Medical Hardware and Stowage - Lunar Outpost Exercise Countermeasures or Dust 
Management 

Item Mass, kg  Volume, m3 Development 
Concept 

Aerobic 34 3.1 Tech. Dev’t 
Resistive 56.7 5.7 Tech. Dev’t 
Dust Dust 

management: 
Suit Lock 

may reduce 
dust loading 

No available  
data 

Tech Dev’t 

 

Table 4-85  Medical Hardware and Stowage- Lunar Sortie 

Item for Lunar Sortie Mass, kg Volume, m3 Development  

Concept Medical Kit 4.5 0.007 COTS 

Medical Contingency Kit 4.5 0.010 Modified COTS 

EVA Contingency Response Kit 
(with Contamination Cleanup) 

2.7 0.036 Modified COTS 

Environmental Health Kit 0.23 0.007 Modified COTS 

Exercise Equipment 2.3 0.003 Technology Development 
Required 

 

 ENVIRONMENTAL MONITORING 

An ECLS system provides a habitable environment in manned vehicles by fundamentally addressing the 
physical, chemical, and biological risks external to the human body that can impact the health of a 
person.  Environmental health risks are mitigated not only by employing these active and passive controls, but 
also establishing environmental standards (SMACs, SWEGs, microbial and acoustics limits) and environmental 
monitoring.  Because risks can vary during missions and change over time, environmental monitoring is 
considered a vital component to an environmental health management strategy for maintaining a healthy crew 
and achieving mission success.  Environmental monitoring involves monitoring four aspects of the habitable 
environment of the vehicle to ensure crew health.   

• Air Quality - assesses potential airborne contaminant exposures during spaceflight and establishes 
Spacecraft Maximum Allowable Concentrations (SMACs) that will protect crew while living and 
working in space; 

• Water Quality - assesses and characterizes the quality of water sources, verifies these systems meet 
potability requirements, and establishes Spacecraft Water Exposure Guidelines (SWEGs); 

• Microbiology - assesses bacterial and fungal contamination levels in the air, water, and surfaces and 
addresses issues related to infectious disease and microbial ecology of spacecraft; Microbiology also 
establishes pre-flight and in-flight acceptability levels; 

• Acoustics Management- assesses the spacecraft environment and ensures noise levels are within 
acceptable limits so the crew can comfortably and safely live, communicate, and work; Acoustics also 
establishes noise exposure levels. 
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Figure: 4-8 below shows the parameters used to assess environmental health.  The various concentration limits 
and levels for crew health can be found in the Medical Operation Requirements Document (MORD).  Table 4-86 
lists the typical volatile organic compounds (VOCs) found in the habitable cabin of ISS.  The average low and 
average high are based on ground analyses of returned grab sample containers (GSCs) from January-2001 to 
March-2011.   Table 4-87 to Table 4-89 are the microbial limits and acoustic limits for ISS.  Oxygen and carbon 
dioxide are monitored primarily by the Major Constituents Analyzer (MCA) during nominal scenarios.  During 
contingency scenarios, small, battery-powered, hand-held devices are used to back-up the MCA.  System 
chemicals such as ammonia, used as the working fluid of the external thermal control system, are monitored for 
potential leaks.   

 

Figure: 4-8   Environmental Health 
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Table 4-86:   Volatile Organic Compounds 

Volatile Organic Compounds (VOCs)* Concentration Range (ppm)  

VOC Type Chemical  low high References: 
*NASA (2003) 

Alcohols **Ethanol 0.531 3.715 #James (2013)  

  **Methanol 0.076 0.763   

  **2-Propanol 0.041 0.407   

  **1-Butanol 0.016 0.330   

  Propylene glycol 0.000 0.000  

Aldehydes  Formaldehyde 0.008 0.081  
 **Acetaldehyde 0.056 0.333  

  **Acrolein (Propenal) 0.004 0.044  

  Pentanal (C3-C8 Aliphatic Sat. Aldehyde) 0.003 0.142  

  **Hexanal (C3-C8 Aliphatic Sat. 
Aldehyde) 0.002 0.122  

Alkanes Pentane (C5-C7 Alkanes) 0.003 0.169  

  **Hexane (C5-C7 Alkanes) 0.003 0.142  

Ketones **Acetone 0.042 0.421  

  **2-butanone 0.034 0.339  

Organosilicones **Octamethylcyclotetrasiloxane 0.008 0.165  

  **Hexamethylcyclotrisiloxane 0.011 0.220  

  **Decamethylcyclopentasiloxane 0.007 0.132  

  **Trimethylsilanol 0.027 1.08  

Aromatic **Benzene 0.016 0.313  

  Ethyl benzene 0.002 0.023  

  **Toluene 0.027 0.265  

  **ortho-Xylenes  0.023 0.230  

  **meta, para-Xylenes  0.023 0.230  

Halogenated **Dichloromethane 0.014 0.288  

  Freon 218 (perfluoropropane) 13.0 130  

Esters **Ethyl acetate 0.028 0.277  

Combustion Products# Monitoring Range Accuracy  

Carbon Monoxide (CO) 5 – 1000 ppm 5 - 50 ppm ±20% 
50 – 1000 ppm ±10% 

 

Hydrogen Cyanide (HCN) 1 – 50 ppm 1 – 50 ppm ±25%  

Hydrogen Chloride (HCl) 1 – 50 ppm 1 – 50 ppm ±25%   
Hydrogen Fluoride (HF) 1 – 50 ppm 1 – 50 ppm ±25%  

**denotes VOC currently monitored in real-time on board ISS 
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Table 4-87   Microbial Specifications of USOS air and surfaces for ISS 

 Maximum for Bacteria Maximum for Fungi 
Air 1000 CFU/m3 100 CFU/m3 
Internal Surfaces 10,000 CFU/100 cm2 100 CFU/100 cm2 
*NOTE:  Microbial specifications have been established to provide an alert level indicating that an assessment shall be 
performed to determine risk to crew health or systems performance. Refer to Section 7.4.6. 

 

Table 4-88   Microbial Specifications of ISS water in USOS. 

Water 
Parameter Units 

Russian 
Ground-
Supplied 
potable 

SVO-ZV 
(2) 

Regenerated 
Potable 
SRV-K 

Hygiene 

U.S 
Water 

Recovery 
System 

and 
CWC-I 

(3) 

 

Bacteria 
Count CFU/mL 50 50 1000 50  

Coliform 
Bacteria 
Count 

CFU/100mL Non-
detectable 

Non-
detectable 

Non-
detectable 

Non-
detectable 

 

Protozoa N/A (4) TT(5) N/A TT TT  

(1) Microbial acceptability limits have been established to provide an alert level 
indicating that an assessment shall be performed to determine risk to crew health or 
systems performance. 
(2) SSP 50129 standards apply to Russian grade water delivered by ATV. 
(3) SSP 50917 standards apply to U.S. grade water delivered by HTV. 
(4) N/A = not applicable 
(5) TT = Treatment Technique.  Source water shall be filtered through a one micron 
filter.  No analysis is required. 

 

Table 4-89   Acoustic Noise Limits in the USOS of ISS. 

 Octave Frequency Band, Hz 
Work Area 63 125 250 500 1000 2000 4000 8000 
(NC-50) 71 64 59 54 51 49 48 47 
(NC-48 + NC-50) where payload 
complement applies 73 66 60 56 53 51 50 49 

Sleep Area (NC-40) 64 56 50 45 41 39 38 37 
 

 IN-SITU RESOURCE UTILIZATION INTERFACE 

Significant quantities of local resources are available at Mars that might be used for life support.  Sridhar, 
et al. (1998) identified some resources that might be needed (Table 4-90) Drysdale (1998) estimated very roughly 
the masses required for each resource and the cost leverage that seemed credible from in-situ resource utilization 
(ISRU) based on data from John Finn (NASA Ames Research Center).  (See Table 4-91) 

Regolith may be used for radiation and meteoroid protection at a long-term base, and would be available 
for the cost of moving it and bagging it. 

Water would be a high leverage item, particularly if bioregeneration is used extensively.  It could be 
available from the atmosphere, despite its dryness, from permafrost that is expected to be extensive a meter or two 
below the surface, from polar ice, or from subsurface water or ice deposits.  It could also be made from atmospheric 
carbon dioxide, if a source of hydrogen is available.  Even if hydrogen had to be shipped from Earth, this would 
still give a 5 to 1 cost advantage.  The cost of acquisition would depend on the cost of extraction and purification.  
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Currently, the abundance and location of water on Mars is undetermined.  The atmosphere of Mars carries water 
vapor in minimal quantities.  Likewise, large deposits of water exist at both Martian poles, but accessing that water 
is complicated by the seasonal deposition of frozen carbon dioxide on top of the ice deposits. Atmospheric carbon 
dioxide could support plant growth, particularly if a plant growth unit is set up and started remotely.  It could be 
readily extracted from the atmosphere, which is 95% carbon dioxide, though at a low pressure. 

An inert gas would be needed to dilute the cabin oxygen, assuming the base air would not be pure oxygen.  
This could be extracted from the atmosphere by removing the carbon dioxide and water vapor. 

Finally, oxygen, for crew respiration, can be obtained from the atmosphere, either by removing the rest 
of the gas, or by reaction with the atmospheric carbon dioxide using either a Sabatier/electrolysis or Zirconia cell 
reaction. 

A design reference mission (Hoffman and Kaplan, 1997) proposes using local resources to make rocket 
propellant, liquid methane and liquid oxygen, for the Mars ascent vehicle from the Martian atmosphere.  While 
oxygen is available as a product from splitting carbon dioxide, methane production requires a source of hydrogen.  
Water provides a readily used source of hydrogen, but as addressed above, it may not be readily available.  The 
design reference mission avoids the issue of water availability by providing liquid hydrogen from Earth for ISRU 
propellant production. 

Similar propellants could be used for power storage, including propelling surface or aerial vehicles, 
especially if a local source of water is available.  In addition, the same chemical processing plant could be used to 
make life support commodities, such as listed below in Table 4-92.  Some of these, inert gases, for example, might 
be made available as by-products at minimal added cost. 

Note that shipped commodities will have a negative cost leverage to account for packaging.  This can be 
a significant mass factor, as shown in  

Table 4-4 for permanent gases.  This is in addition to any cost factor for the shipping location as identified 
in Table 3-3. 

Table 4-90  Nitrogen Gas Losses Associated with International Space Station Technology 

Parameter 
Mass 
[kg/y] Comments Reference 

Nitrogen Resupplied 796  Information from Sridhar, 
et al. (1998) ISS Module Leakage 18 - 44  

Airlock Losses 10% mass of nitrogen lost per cycle is 1 kg 

Table 4-91  Nitrogen Gas Losses for the Mars Design Reference Mission (One Cycle) 
 Using ISS Technologies 

Mission 
Phase Event 

Mass 
[kg] 

per 
Event 

Total 
Mass 
Lost 
[kg] 

Calculation 
Basis Reference 

Transit Module Leakage ≤
0.15(2) 

day 39 260 days transit; 
both ways 

(1) Sridhar, et al. (1998) 
(2) CA0042-PO, NASA, 
2011) 

Surface Airlock Usage 1 cycle 1,200 2 cycles/day for 
619 days 

 

Surface Module Leakage ≤
0.15(2) 

day 93 619 days 
 

Total    1,332 Gas Mass 
Excluding Tanks 
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Table 4-92  Estimation of Cost Leverages from In-Situ Resource Utilization 185 

Commodity 
Requirement 

[kg] 
Cost 

Leverage Comments / Assumptions Likelihood 186 
Regolith 620,000 3,100 Assumes a Rover is Available Always 
Water 12,000 310 From Local Permafrost Unknown to Unlikely 
Water 12,000 390 From Local Atmosphere Unlikely 
Water 12,000 5 Produced Using Hydrogen from Earth Always 

Carbon Dioxide 528 47 For 30 days of Plant Growth; Using Local 
Atmosphere Always 

Inert Gas 
(Argon/Nitrogen) 508 1.6 From Local Atmosphere Always 

Oxygen 121 19 From Electrolysis of Local Water Unknown to Unlikely 

Hydrogen system 
dependent 1.2 From Electrolysis of Local Water Depends on water 

availability 

Allen and Zubrin (1999) suggest ISRU is also available on the Moon, though the variety and source of 
commodities is different.  Specifically, oxygen is available as an oxide within the lunar regolith.  Further, though 
very limited in extent, water, as ice, is present in deep craters at both lunar poles. 

  INTEGRATED CONTROL INTERFACE 

Most life support uses direct feedback with manual override capability possible or even likely.  Adding 
oxygen to the cabin was done by relatively slow response valves which might overshoot their target point; but the 
overall effect on the system was small as the operating point was not critical.  As processes become more 
interrelated, and as the mass of commodities is more critical, control systems must be more sophisticated, faster 
responding with greater accuracy of information, and autonomous control of many interdependent systems. 

Life support missions prior to the International Space Station (ISS) were open loop and involved 
measuring temperature, pressure, and flowrate using fairly simple devices.  Lunar and Mars Life Support Systems, 
will likely require detailed air and water composition using real time measurements without frequent intervention 
from the crew.  Smart sensors, which combine the sensing device, electronics, data processing, and data analysis 
can speed up control processes and reduce computer loads.  Arrays of sensors are possible with built in redundancy 
and diagnostics, all on a single chip (Finn, 1993).  Much of this work is being done at the NASA Glenn Research 
Center in Cleveland, Ohio (Hunter, 2005).   

Research on advanced automation specific to life support has been limited, although much attention has 
been devoted to control algorithm development in general.  System integration refers to the problem of putting 
together disparate, heterogeneous systems in order to perform specific system functions to meet system operating 
goals (Overland, 2006).  As missions develop to the point where there is greater closure of life support elements 
(recycling and reuse of elements of the system), longer operating times with smaller buffers, interdependencies 
between systems or system elements, and increased system closure, the missions are going to require more 
responsive or more robust control (Finn, 1993).  Addition of biological components will further complicate the 
system as reactions and reaction rates are generally more complex than physical chemical processes.  The 
individual processes will have to be thoroughly understood to apply control algorithms effectively. 

                                                           
185 From Drysdale (1998) using data from J. Finn (NASA/Ames Research Center).  These estimates are very preliminary. 
186 Likelihood assesses how likely a particular commodity might be available based on current knowledge of Mars for a 

typical site.  Assessment scale: “Always” implies availability at all sites.  “Likely” implies availability at most sites in 
unlimited quantities.  “Unlikely” implies availability at some sites in unlimited quantities, or available at most sites in 
limited quantities.  “Unknown” implies unknown availability. 
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 BIOMASS PRODUCTION 

4.14.1 PLANT GROWTH CHAMBERS 
4.14.1.1 LIGHTING ASSUMPTIONS 

Plants offer the greatest opportunity for self-sufficiency and, possibly, cost reduction for long duration 
missions, but at the same time have some of the greatest unknowns.  An attempt has been made to estimate the 
mass of a plant growth system on the surface of an extraterrestrial body such as Mars.  Two uncertainties are the 
cost of power, and the availability of water locally.  The initial assumption, as shown in Table 4-93, is that natural 
lighting cannot be used because the solar radiation reaching Mars is only 43% that reaching Earth, and Mars is 
susceptible to large dust storms that can reduce light reaching the surface.  Yet recent analyses suggest that some 
latitudes on Mars can receive up to 30 mol/(m²●d) for much of the year, which is nearly 50% that of some of the 
brightest areas on Earth (Clawson, 2006), so future biomass production systems might use natural sunlight 
supplemented by electrical lighting to achieve optimal biomass production per infrastructure mass required. 

In addition, fresh food is crucial to crew welfare, and nutritionists generally recommend deriving food 
from original sources such as grown plants and/or livestock.  Because livestock production is more expensive even 
terrestrially, early in-situ food production will likely concentrate on growing crops.  As shipped, fresh foodstuffs 
from crops are heavier than dehydrated or low-moisture foods due to the significant mass associated with natural 
moisture.  Thus, while plants will probably be grown on an extraterrestrial body, the question remains as to what 
proportion of the food will be grown locally versus what proportion will be shipped. 

Table 4-93  Lighting Data 

Parameter [Units] low nominal high References 
Light Conversion Efficiency 
[W photosynthetically active radiation/W electrical] 187 0.18 (1)   0.5 (1) 

(1) Personal 
communication 
with J. Sager in 
1999 

(2) Bourget (2014) 
(3) Personal 

communication 
with J. Sager 
2006 

Light Delivery Efficiency [PPF delivered/PPF emitted] 188 0.3 (1)   0.8 (3) 

Overall Lighting Efficiency 0.05 (1) 0.40 (2) 0.40 (3) 

A key parameter for plant growth is lighting, and electrical lighting might provide this.  The efficiency of 
electrical lighting depends on the efficiency of the conversion of electricity into radiant energy, and the direction 
of this energy onto the plant canopy.  The conversion efficiency depends on the type of lamp.  Thus, many factors 
impact photosynthetically active radiation (PAR).  Photosynthetic photon flux (PPF) is another way of expressing 
PAR but specifically using quantum units, such as μmol/(m²●s), instead of W/m².  Incandescent lamps are good 
because they are red-rich, but the conversion efficiency to PAR is low.  High intensity discharge (HID) lamps 
produce more light, but their spectrum varies depending on the type of lamp, with metal halide lamps producing a 
broad spectrum and high-pressure sodium producing a yellow-orange light with a low amount of blue.  Both types 
have proved acceptable for photosynthesis.  Some lamp types, such as microwave lamps, have a high efficiency 
and a broad spectrum (personal communication with J. Sager in 1999), yet improvements are needed in their 
magnetron power supplies to sustain long duty cycles.  Direction of the energy to the canopy depends on the 
geometry of the lamp, the distance from the lamp to the canopy, and the quality of the reflectors.  The Biomass 
Production Chamber (BPC) at Kennedy Space Center used relatively unsophisticated reflectors, and only achieved 
a rating of about 10-15% (personal communication with R. Wheeler in 2017).  Much higher ratings can be 
achieved, but maintaining these high ratings over long time periods requires upkeep, such as periodic cleaning and 
adjustments to the lamp reflectors. 
 
 

                                                           
187 Light Conversion Efficiency describes the proportion of lighting system power that eventually becomes PPF. 
188 Light Delivery Efficiency describes the proportion of PPF at the lamp surface that is delivered to the canopy. 
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Nelson and Bugbee (2014) point out that artificial plant growth lights have been improving rapidly and report the 
following values for photosynthetic photons per Joule of electrical energy: 

• HPS (double ended) 1.70 micromoles/J 
• LED   1.66 micromoles/J 
• Fluorescent   0.95 micromoles/J 

The authors explain that “Photosynthesis and plant growth is determined by moles of photons. It is thus 
important to compare lighting efficiency based on photon efficiency, with units of micromoles of photosynthetic 
photons per joule of energy input. This is especially important with LEDs where the most electrically efficient 
colors are in the deep red and blue wavelengths.” 
 
If LEDs are run well below their rated current, their electrical efficiencies can be quite high. For the Veggie plant 
growth system on ISS, overall light cap efficiency is about 40% at maximum light (Bourget, M, 2014). 
Individual LED efficiencies are: 

• Red 34.5% 
• Blue 69% 
• Green 24.5% 

Again, see Nelson and Bugbee (2014) for a better understanding of this subject. 
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4.14.1.2 LIGHTING EQUIPMENT DATA 

Additional assumptions can be made about specific lighting systems.  Data for 400 W high-pressure 
sodium lights (HPS) are shown in Table 4-94. 

Table 4-94  High Pressure Sodium Lighting Data 

 Units low nominal high References 
Lamp Power 
(not including ballast) kW -- 0.4 (2) -- 

(1) Personal 
Communication 
with A. Drysdale  
in 1999   

(2) Hanford (1997) 
(3) Hunter and Drysdale 

(2002) based on 
Personal 
communication with 
J. Sager in 1999 

(4) Hunter and Drysdale 
(2002) based on 
Ewert (1998) 

(5) A rough value from 
Hunter, J. 

(6) Personal 
Communication 
with  M. Ewert 
in2001 

(7) Barta and Ewert 
(2002) 

(8) Ewert (1998) 
(9) BIO-Plex drawings 
(10) See Table 3-10.  

This value 
corresponds 
to storing lamps 
within trays. 

Lamp Mass kg  0.21 (2)  
Lamp Life 10³ h  20 (1) 24 (1) 
Number of 400 W Lamps per 
Area to Give 1,000 µmol/(m²•s) lamps/m² 1.43 (3) 4.504 (4) 9.259 (3) 

Time to Change Out Lamps CM-h  0.03 (5)  
Photoperiod per Day 189 h/d 10 (1) 10-24 190 24 (1) 
Lamp Volume for Resupply m³ × 10-³  0.625 (1)  
Ballast Power kW/lamp 0.03 (1) 0.06 (2) 0.08 (1) 
Ballast Mass kg/lamp 2.85 (6) 4.76 (1) 9.52 (2) 
Ballast Life 10³ h  88 (7)  
Mass of Coldplate, Water 
Barrier, Condensing Heat 
Exchangers per Growing Area 

kg/m² 4.43 (8) 191 7.02 (8) 192 25.83 (8) 
193 

Height of Lighting Assembly m  0.15 (9) 0.3 (1) 
Lamp Resupply Mass Factor kg/kg  0.8 (10)  

Lamp Resupply Volume Factor m³/m³  0.5 (1)  

Resupply mass and volume factor account for the extra mass and volume required to package replacement 
lamps.  This is in addition to any mass and volume associated with the lamp itself. 

                                                           
189 This is generally crop dependent, although the values here provide the range for all ELS crops. 
190        See Table 4-96 for nominal photoperiods of candidate Life Support crops. 
191 This system uses only a bulb in a water jacket.  Transmissivity, relative to the baseline case using a coldplate and no 

barrier, is 0.92.  The ratio of total radiation to PAR is 1.6 compared to 2.0 for the baseline.  Note: This configuration 
provided the best overall performance in testing. 

192 This system uses a bulb in a water jacket with a Teflon barrier.  Transmissivity, relative to the baseline case using a 
coldplate and no barrier, is 0.846.  The estimated ratio of total radiation to PAR is 1.6 compared to 2.0 for the baseline. 

193 This system uses a coldplate with a glass barrier.  Transmissivity, relative to the baseline case using a coldplate and no 
barrier, is 0.89.  The ratio of total radiation to PAR is 1.7 compared to 2.0 for the baseline. 
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4.14.1.3 PLANT GROWTH CHAMBER COST FACTORS 

The cost factors for a plant growth chamber have been estimated on a square-meter basis.  This addresses 
the plant growth chamber itself.  If crew access is needed, and it generally will be, provision must be made for that 
access.  A reasonable number might be 25 – 50% of the plant canopy area.  Lower numbers might be adequate if 
extensive physical automation is planned.  A higher number might be appropriate if most tasks are performed 
manually.  Crew access space would not, however, require the equipment and other “costs” shown here.  Crew 
height will be greater than the height of most plants that have been considered for Life Support crops.  Layout of 
the crops and crew space will depend on issues such as the type of plant lighting.  Thus, if natural lighting is to be 
used, only a single layer of crops might be possible due to the diffuseness of light on Mars.  In this case, the 
limiting height would be the taller of the crew and the plants.  Table 4-95 (Drysdale, 1999b) presents preliminary 
values for an optimized biomass production chamber based on projecting current NASA growth chambers to flight 
configurations. 

From a power perspective, most research has focused on more efficient lighting and progress has been 
make. Integrated plant growth chambers also need power for blowers, pumps, etc. Reference values for biomass 
production per unit energy range from 1.6 g/kWh (based on JSC’s VPGC) to 10 g/kWh (based on a mixed crop in 
South Pole Food Growth Chamber). 

Table 4-95  Plant Growth Chamber Equivalent System Mass per Growing Area 

Component 
Mass 

[kg/m2] 
Volume 
[m3/m2] 

Power 
[kW/m2] 

Thermal 
Control 
[kW/m2] 

Crew-
time 

[CM-h 
/m2•y] 

Logistics 
[kg 

/m2•y] Reference 
Crops 20.0 – – – 13.0  From Drysdale 

(1999b) 
Shoot Zone 3.6 0.67 0.3 194 0.3 194 – – 

Root Zone 
Water and 
Nutrients 

36.8 0.11 0.14 0.14 TBD TBD 

Lamps 22.9 0.25 2.1 2.1 0.027 0.57  
Ballasts 8.4 TBD 0.075 0.075 0.032 3.24  
Mechanization 
Systems 4.1 TBD TBD TBD TBD TBD  

Secondary 
Structure 5.7 – – – – –  

Total 101.5 1.03 2.6 2.6 13.1 3.81 
 
 
 

4.14.1.4 PLANT VALUES 

4.14.1.4.1 TIME-AVERAGED VALUES DESCRIBING PLANT GROWTH 
Plant growth rates depend on the type of plant (species and cultivar) and the growth conditions. The table 

lists nominal environmental conditions for each crop.  
Table 4.87 through Table 4.89 provide design values for candidate ELS crops (Behrend and Henninger, 

1998).  
Table 4-96 presents overall life-cycle growth rates in terms of grams of biomass per square meter per day.  

The dry mass (dw) fresh mass (fw) 195and water content for both edible and inedible biomass are given.  The 

                                                           
194 Power consumption and thermal control within the shoot zone reflect fans for gas movement. 
195 Historically, “dw” and “fw” denote “dry weight” and “fresh weight,” respectively.  Scientifically, these quantities are 

masses and not weights.  Weight is a force derived from the gravitational attraction between a body and, practically, a 
much larger body such as a planet.  Thus, a body always has mass, but it has weight only within a planet’s gravitational 
field. 
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harvest index is the ratio of edible biomass to total biomass. Table 4-98 provides nominal and upper biomass 
generation rates.  The lower rate is zero, and the given upper limit is the highest rate recorded in the literature.  
This may not be the absolute maximum, however.  For example, wheat may well produce higher growth rates with 
higher light intensities (received from a personal communication from B. Bugbee, 1998).  These maximal rates 
are generally for small chambers under ideal conditions, and they might be difficult to achieve in larger chambers 
that have been optimized for space flight.  The nominal rates are derived from testing within the Biomass 
Production Chamber (BPC) at Kennedy Space Center (personal communication with R. Wheeler in 2001), and the 
values presented may be composite or average values from several different tests.  These rates are lower partly 
because of the lower light levels, but a less homogeneous environment, due to the larger scale, may also impact 
the growth rates.  In addition, BPC data are conservative in that they used fixed spacing from germination to 
harvest.  Use of variable spacing or transplanting schemes for widely spaced crops could save up to 15 days on 
production cycles.  For example, the cycle for lettuce is reduced from 28 to ~14 days (Wheeler et al., 2008).  
Obviously, seedling nurseries would require some area, but this would be on the order of only 1% to 10% of the 
area required for mature-plant production.  Table 4-97 also presents the biomass chemical composition in terms of 
carbon and the metabolic reactants and products averaged over the crop life cycle. 
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Table 4-96  Exploration Life Support Cultivars, Intended Usage, and Environmental Growth Conditions 

Crop 

ELS 
Transit 
Crop (1) 

ELS 
Surface 
Crop (1) 

Photosynthetic 
Photon Flux 
[mol/(m²•d)] 

Diurnal 
Photo-
Period 
[h/d] (3) 

Growth 
Period 196 

[dAP] 

 Temperatures [ C] (3)  
 Air 

during 
Day 

Air 
during 
Night 

Nutrient 
Solution  References 

Cabbage × × 28 (2)  85 (4)  >25   Information from 
Drysdale 2001 except 
as noted. 

(1) Behrend and Henninger 
(1998) 

(2) Estimated by similarity 
to other crops. 

(3) Wheeler, et al. (2003) 
(4) personal 

communication with R. 
Wheeler 

(5) Ball, et al. (2001) and 
EDIS (2001) 

(6) Richards, et al. (2005, 
2006) 

(7) for small tap roots and 
greens (Wheeler) 

(8) Wheeler, R.M. 2006 

Carrot × × 28 (2)  75 (4)  16-18   
Chard × × 17 (2) 16 45 (3)  23 23 23 
Celery   17 (2)  75 (4)     
Dry Bean  × 24 (3) 18 85 (5)  28 24 26 
Green Onion   26 (6)  50 (5)  25 25 25 
Lettuce × × 17 (3) 16 28 (3)  23 23 23 
Mushroom   0 0      
Onion × × 17  50     
Pea   24 (2)  75 (4)     
Peanut  × 27 (3) 12 104 (3)  26 22 24 
Pepper   27 (2)  85 (5)     
Radish × × 26 (6) 16 25 (4)  23 23 23 
Red Beet   17 (3) 16 40 (3, 7)  23 23 23 
Rice  × 33 (3) 12 85 (3)  28 24 24 
Snap Bean   24 (2) 18 85 (5)  28 24 26 
Soybean  × 28 (3) 12 97 (3)  26 22 24 
Spinach × × 17 (3) 16 30 (4)  23 23 23 
Strawberry   22 (3) 12 100 (4)  20 16 18 
Sweet Potato  × 28 (3) 12 85 (5)  26 22 24 
Tomato × × 27 (3) 12 85 (3)  24 24 24 
Wheat  × 115 (4) 20-24 75-90 (3)  20 20 18 
White Potato  × 28 (3) 12 132 (8)  20 16 18 

                                                           
196 Growth period is measured here in terms of “days after planting,” [dAP]. 
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Table 4-97  Overall Physical Properties at Maturity for Nominal Crops 197 

   
 

Edible Biomass Productivity 
 Inedible Biomass 

Productivity  

Crop 

Mature 
Plant 

Height 
[m] 

Harvest 
Index 
[%] 

 Dry 
Basis 
[g dw 

/m²•d] 

Fresh 
Basis 
[g fw 

/m²•d] 

Fresh 
Basis 
Water 

Content 
[%] 

 Dry 
Basis 
[g dw 

/m²•d] 

Fresh 
Basis 
[g fw 

/m²•d] 

Fresh 
Basis 
Water 

Content 
[%] References 

Cabbage 0.35 90  6.06 (2) 75.78 92  0.67 6.74 90 Information from 
Drysdale 2001 except 
as noted. 
(1)Wheeler, et al. (2003) 
(2)Ball, et al. (2001) and 
EDIS (2001) 

(3) personal 
communication with R. 
Wheeler 

(4)  Hill et al (1992) 
 

Carrot 0.25 60  8.98 (2) 74.83 88  5.99 59.87 90 
Chard 0.45 (1) 65 (1)  7.00 (1) 87.50 92  3.77 37.69 90 
Celery 0.25 90  10.33 (2) 103.27 90  1.15 11.47 90 
Dry Bean 0.50 (1) 40 (1)  10.00 (3) 11.11 10  15.00 150.00 90 
Green Onion 0.25 90  9.00 (3) 81.82 89  1.00 10.00 90 
Lettuce 0.25 (1) 90 (1)  6.57 (1) 131.35 95  0.73 7.30 90 
Mushroom  90    90    90 
Onion 0.25 80  9.00 81.82 89  2.25 22.50 90 
Pea 0.50 40  10.73 (2) 12.20 12  16.10 161.00 90 
Peanut 0.65 (1) 25 (1)  5.63 (1) 5.96 5.6  16.88 168.75 90 
Pepper 0.40 45  10.43 (3) 148.94 93  12.74 127.43 90 
Radish 0.20 (1) 50 (1)  5.50 (3) 91.67 94 (3)  5.50 55.00 90 
Red Beet 0.45 (1) 65 (1)  6.50 32.50 80  3.50 35.00 90 
Rice 0.80 (1) 30 (1)  9.07 (1) 10.30 12  21.16 211.58 90 
Snap Bean 0.50 40  11.88 (2) 148.50 92 (3)  17.82 178.20 90 
Soybean 0.55 (1) 40 (1)  4.54 (1) 5.04 10  6.80 68.04 90 
Spinach 0.25 (1) 90 (1)  6.57 (3) 72.97 91  0.73 7.30 90 
Strawberry 0.25 (1) 35 (1)  7.79 (2) 77.88 90  14.46 144.46 90 
Sweet Potato 0.65 (1) 60 (4)  24.7 (3,4) 51.72 71  16.5(3,4) 225.00 90 
Tomato 0.40 (1) 45 (1)  10.43 (1) 173.76 94  12.74 127.43 90 
Wheat 0.50 (1) 40 (1)  20.00 (3) 22.73 12  30.00 300.00 90 
White Potato 0.65 (1) 70 (1)  21.06 (1) 105.30 80  9.03 90.25 90 

                                                           
197 Productivities could increase for most species by ~10 to 15% by use of transplanting schemes for more efficient spacing according to Wheeler, et al. (2006). 
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Table 4-98  Nominal and Highest Biomass Production, Composition, and Metabolic Products 198 

Crop 

Total Biomass 
(Edible + Inedible), 

Dry Basis 
[g dw/m²•d]  Carbon 

Content 
[%] 

 Metabolic Reactants and Products  

 

Oxygen 
(O2) 

Production 
[g/m²•d] 

Carbon 
Dioxide 
(CO2) 

Uptake 
[g/m²•d] 

Average 
Water (H2O) 

Uptake / 
Transpiration 

[kg/m²•d] References nominal high  
Cabbage 6.74 10.0  40  7.19 9.88 1.77 Information from 

Drysdale 2001 except 
as noted. 
(1) Wheeler, et al. 

(1995) 
(2) Calculated 
(3) Personal 

communication with 
S. Orcun and R. 
Wheeler in 2003 

Carrot 14.97 16.7  41  16.36 22.50 1.77 
Chard 10.77   40  11.49 15.79 1.77 

Celery 11.47   40  12.24 16.83 1.24 
Dry Bean 25.00   40  30.67 42.17 2.53 
Green Onion 10.00   40  10.67 14.67 1.74 
Lettuce 7.30 7.9  40 (1)  7.78 10.70 2.10 
Onion 11.25   40  12.00 16.50 1.74 
Pea 26.83   40 (3)  32.92 45.26 2.46 
Peanut 22.50 36.0  60 (2)  35.84 49.28 2.77 
Pepper 23.17   40  24.71 33.98 2.77 
Radish 11.00   40 (2)  11.86 16.31 1.77 
Red Beet 10.00   41  7.11 9.77 1.77 
Rice 30.23 39.0  42  36.55 50.26 3.43 
Snap Bean 29.70   40  36.43 50.09 2.46 
Soybean 11.34 20.0  46 (1)  13.91 19.13 4.70 
Spinach 7.30   40  7.78 10.70 1.77 
Strawberry 22.25   43 (2)  25.32 34.82 2.22 
Sweet Potato 37.50 51.3  41 (2)  41.12 56.54 2.88 
Tomato 23.17 37.8  43 (2)  26.36 36.24 2.77 
Wheat 50.00 150.0  42 (1)  56.00 77.00 11.79 
White Potato 30.08 50.0  41 (1)  32.23 45.23 4.00 

                                                           
198 Productivities & transpiration rates could increase for most species by ~10-15% with transplanting schemes for more efficient spacing according to Wheeler, et al. (2008). 
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Table 4-99  Inedible Biomass Generation for Exploration Life Support Diets Based on Fresh Weight 

    
 Diet Using Only 

ELS Salad Crops 
 Diet Using Salad and 

Carbohydrate Crops 
 Diet Using 

All ELS Crops 

Crop 
ELS 
Crop 

Edible 
Biomass 
[g/m²•d] 

Inedible 
Biomass 
[g/m²•d] 

 
Diet 

Growing 
Area 

[m²/CM] 

Total 
Inedible 
Biomass 
[kg/CM-

d] 

 
Diet 

Growing 
Area 

[m²/CM] 

Total 
Inedible 
Biomass 

[kg/CM-d] 

 
Diet 

Growing 
Area 

[m²/CM] 

Total Inedible 
Biomass 

[kg/CM-d] 
Cabbage × 75.78 6.74  0.256 0.002  0.033 0.000  n/a n/a 
Carrot × 74.83 59.87  0.488 0.029  0.535 0.032  0.536 0.032 
Chard × 87.50 37.69  n/a n/a  n/a n/a  n/a n/a 
Celery  103.27 11.47  n/a n/a  0.073 0.001  n/a n/a 
Dry Bean × 11.11 150.00  n/a n/a  1.170 0.176  1.926 0.289 
Green 
Onion 

 81.82 10.00  0.055 0.001  0.416 0.004  0.276 0.003 

Lettuce × 131.35 7.30  0.119 0.001  0.160 0.001  0.057 0.000 
Mushroom     n/a n/a  TBD 0.0013  n/a n/a 
Onion × 81.82 22.50  n/a n/a  n/a n/a  n/a n/a 
Pea  12.20 161.00  n/a n/a  0.311 0.050  n/a n/a 
Peanut × 5.96 168.75  n/a n/a  n/a n/a  4.832 0.815 
Pepper  148.94 127.43  n/a n/a  0.208 0.027  n/a n/a 
Radish × 91.67 55.00  0.098 0.005  n/a n/a  0.164 0.008 
Red Beet  32.50 35.00  n/a n/a  n/a n/a  n/a n/a 
Rice × 10.30 211.58  n/a n/a  n/a n/a  2.078 0.440 
Snap Bean  148.50 178.20  n/a n/a  0.067 0.012  n/a n/a 
Soybean × 5.04 68.04  n/a n/a  n/a n/a  46.429 3.159 
Spinach × 72.97 7.30  0.066 0.000  0.548 0.004  0.635 0.005 
Strawberry  77.88 144.46  n/a n/a  n/a n/a  n/a n/a 
Sweet 
Potato 

× 51.72 225.00  n/a n/a  3.480 0.783  1.485 0.334 

Tomato × 173.76 127.43  0.265 0.034  1.209 0.154  1.642 0.209 
Wheat × 22.73 300.00  n/a n/a  9.679 2.904  4.237 1.271 
White 
Potato 

× 105.30 90.25  n/a n/a  1.614 0.146  0.994 0.090 

Total     1.35 0.07  19.50 4.29  65.29 6.66 
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Plant environmental demands differ compared to the crew’s requirements.  For example, the optimum 
partial pressure of carbon dioxide for plant growth is roughly 0.10 to 0.20 kPa (Wheeler, et al., 1993); below this, 
productivities decrease.  Sensitivity may vary from species to species, but plants do appear to have reduced 
productivity at very high partial pressures of carbon dioxide that are considered within the normal range for crew 
(up to about 1.0 kPa).  Similarly, plants require higher relative humidity – about 75% – to avoid water stress and 
minimize nutrient solution usage.  Such humidity levels are at the high end for crew comfort.  Further, some key 
plants, such as wheat and potatoes, are most productive at temperatures below the standard crew comfort zone.  
Finally, at nominal Earth ambient carbon dioxide partial pressures (p [CO2] = 0.04 kPa), plants grow better under 
atmospheres with reduced partial pressures of oxygen (p [O2] less than 21 kPa).  If the partial pressure of carbon 
dioxide is elevated to 0.1 to 0.2 kPa, the benefits of reduced oxygen partial pressure are negligible.  However, 
because human beings live with plants on Earth, plants and crew can live in a common atmosphere. 

Table 4-99 
Inedible Biomass Generation for Exploration Life Support Diets Based on Fresh Weight enumerates growing areas 
and fresh weight inedible biomass production associated with the ELS Project diets presented in Section 4.5.7.  
The edible biomass values are the nominal values listed above in Table 4-99  The total inedible biomass production 
is based on the edible biomass production and the harvest index, and does not include any waste associated with 
uneaten portions or the material removed during food preparation. 
4.14.1.4.2 TIME-AVERAGED VALUES TO SUPPORT PLANT GROWTH 

Table 4-100 presents some details about plant growth with current hydroponic technology, providing 
water and nutrient use necessary to keep the plants healthy.  Luxuriant nutrient levels were provided, so lower 
levels of nutrients might also suffice.  The nutrient solution shown was formulated to require only acid addition 
for pH control.  However, alternative formulations might require less active pH control (and thus fewer 
consumables to maintain the pH).  Finally, plant productivity varies from one cropping cycle to the next even 
under controlled conditions, so the values here should be viewed as typical.  Actual productivity from any real 
cropping cycle might vary. 

Table 4-100  Plant Growth and Support Requirements per Dry Biomass 

 Units Soybean Wheat Potato Lettuce Reference 
Water Usage per 
Dry Biomass L/g dw 0.32 0.13 0.15 0.34 

From Wheeler, et al. 
(1999). 

Stock Usage per 
Dry Biomass L/g dw 0.026 0.021 0.022 0.034 

Acid Usage per 
Dry Biomass 199 g acid/g dw 0.0548 0.0744 0.0428 0.0618 

                                                           
199 For nitrate-based formulations.  Acid is provided as 0.4 M HNO3.  One mole of nitric acid (HNO3) contains 

63.013 grams of solute. 
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Table 4-101 and Table 4-102 describe the major ionic components of the nutrient solutions used for 
studies within the Biomass Production Chamber at Kennedy Space Center as determined from Wheeler, et al. 
(1996) and Wheeler, et al. (1997).  As indicated, the initial stock solution, which is at the desired concentration to 
support plant growth, is more dilute than the mixture of two replenishment solutions that are added incrementally, 
as necessary, to replace nutrient used by plants or otherwise lost.  For this facility, replenishment solution is added 
in a fixed concentration as a function of electrical conductivity regardless of which ions are depleted.  Each salt 
primarily contributes one important element, as noted.  The elemental concentrations, then, are with respect to the 
listed important element.  Note that because pH is controlled by adding nitric acid (HNO3), the nitrogen content 
of the acid must be considered in calculating the total nitrogen provided to the plants.  In addition, minerals might 
be lost to the plants through uptake by microorganisms and by precipitation from solution.  Some nitrogen may 
leave nutrient solution via volatilization as nitrogen gas or as nitrogen oxides as a result of microbial metabolism.  
Finally, to inhibit ionic build-up within the nutrient solution due to the procedures outlined here, especially sodium 
or boron; the nutrient solution is often replaced at regular intervals. 

Projections of total fertilizer needs (based on Table 4-100) to supply all the dietary calories for human 
life support (2500 kcal person-1 day-1) suggest that 90 to 100 kg of fertilizer salt might be required per person per 
year (Lunn et al., 2017).  But > 50% of these nutrients could be recycled from inedible biomass from the crops, 
using processing like stirred tank reactors or composting (Strayer et al., 2002).   In addition, recycled waste water, 
especially wastewater containing processed urine, could further close the mass loop for nutrients required to grow 
crops.  
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Table 4-101  Composition of Initial Nutrient Solution 

      Content  
Initial Ionic 
Component 

Important 
Element Elemental Atomic Weight 

Concentration 
[meq/L] 200 Ion Molecular Weight Valence 

g/L 
(element) 

g/L 
(ion) Reference 

Nitrate, NO3 – Nitrogen, N 14.01 7.5 62.00 –1 0.1051 0.465 Wheeler, et al. (1996) 

Phosphate, PO4 3– Phosphorous, P 30.97 0.5 94.97 –3 0.0465 0.142 
Potassium, K + Potassium, K 39.10 3 39.10 +1 0.1173 0.117 
Calcium, Ca 2+ Calcium, Ca 40.08 2.5 40.08 +2 0.2004 0.200 
Magnesium, Mg 2+ Magnesium, Mg 24.31 1 24.31 +2 0.0486 0.049 
Sulfate, SO4 2– Sulfur, S 32.06 1 96.06 –2 0.0641 0.192 

Total       1.166 
 

Table 4-102  Composition of Replenishment Nutrient Solution 

      Content  
Replenishment Ionic 
Component 

Important 
Element Elemental Atomic Weight 

Concentration 
[meq/L] 200 Ion Molecular Weight Valence 

g/L 
(element) 

g/L 
(ion) Reference 

Nitrate, NO3 – Nitrogen, N 14.01 75 62.00 –1 1.051 4.650 Wheeler, et al. (1997) 

Phosphate, PO4 3– Phosphorous, P 30.97 7.5 94.97 –3 0.697 2.137 
Potassium, K + Potassium, K 39.10 68 39.10 +1 2.659 2.659 
Calcium, Ca 2+ Calcium, Ca 40.08 7.5 40.08 +2 0.601 0.601 
Magnesium, Mg 2+ Magnesium, Mg 24.31 9.8 24.31 +2 0.476 0.476 
Sulfate, SO4 2– Sulfur, S 32.06 9.8 96.06 –2 0.628 1.883 

Total       12.406 
 

                                                           
200 Here the units, [meq/L], denote milli-equivalent weights of the ionic component per liter of solution.  An equivalent weight is the ion’s molecular weight divided by the absolute value 

of the ion’s valence. 
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4.14.1.5 MODIFIED ENERGY CASCADE MODELS FOR CROP GROWTH 

Cavazzoni (2001) presents a package of models appropriate for use in system-level modeling.  These 
Modified Energy Cascade (MEC) models build upon the earlier work of Volk, et al. (1995) and benefit from 
studies by Monje (1998), Monje and Bugbee, (1998), and Jones and Cavazzoni (2000) 201. 

The MEC models calculate biomass production, on a dry-mass basis, as a function of photosynthetic 
photo flux, PPF, and the atmospheric carbon dioxide concentration, [CO2]. 202  The atmospheric temperatures, one 
for light periods and a second for dark periods, and the photoperiod are constant and the plant growth is not limited 
by water or nutrients.  These models accommodate daily variations in PPF and [CO2], but weighted values of PPF 
and [CO2] should be used to estimate time for canopy closure, tA.  The models generally apply over a range of PPF 
from 200 to 1,000 µmol/m²•s 203 and a range of [CO2] from 330 to 1,300 µmol/mol.  For rice and wheat, these 
models apply up to 2,000 µmol/m²•s.  The PPF range for lettuce is limited to 200 to 500 µmol/m²•s, because a 
light integral of only 17 mol/m²•d is recommended to prevent leaf tip burn.  See, for example, Hopper, et al. 
(1997), for recommended PPF requirements for crop growth. 

4.14.1.6 MODIFIED ENERGY CASCADE MODELS FOR CROP BIOMASS PRODUCTION 

The following material outlines the top-level MEC models developed by Cavazzoni (2001) in detail.  The 
various parameters depend upon the crop cultivar and growing conditions.  Parameters for nominal conditions of 
lighting, temperature, and atmospheric composition are presented in Section 4.14.1.7.1. 

The fraction of PPF absorbed by the plant canopy, A, is a function of time, t, in terms of days after 
emergence [dAE], and the time for canopy closure, tA [dAE] by the following relationship: 

A = AMAX

n

At
t








 for t < tA 

A = AMAX for t > tA Equation 4-15 

where AMAX is 0.93 and n is enumerated for various crops in Table 4-103 below.  The parameter, tA, is computed 
as a function of PPF and [CO2] for each crop.  This function is presented below with appropriate coefficients. 

Table 4-103  Values for the Exponent n in MEC Models 

Crop n 
Wheat 1.0 
Rice, Soybean, Sweet Potato 1.5 
Dry Bean, Peanut, White Potato 2.0 
Lettuce, Tomato 2.5 

                                                           
201 Jones and Cavazzoni present the Top-Level Energy Cascade models.  Though the Modified Energy Cascade equations 

and the Top-Level Energy Cascade equations share some ideas, the Top-Level Energy Cascade equations provide 
models for quantities that are input parameters for the Modified Energy Cascade equations.  Further, the Modified 
Energy Cascade equations include models to compute biomass oxygen generation. 

202 Other environmental and physiological factors may also vary.  See Cavazzoni (2001) for complete details on this model. 

203 Photosynthetic photon flux (PPF) is commonly expressed in units of either µmol/(m²•s), as listed 
here, or mol/(m²•d)..  The units for PPF are related by the expression: 

PPF [µmol/(m²•s)] = PPF [mol/(m²•d)] × 1/H × (1 h/3600 s) × (10 6 µmol/1 mol) 
 where H is photoperiod [h/d].  See Table 4-117 for nominal values of H, which are designated HO.  Because units for 

PPF depend upon the duration during which crops receive photosynthetic irradiation, the conversion to a “per day” 
basis depends on the diurnal photoperiod per day. 
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The canopy quantum yield, CQY, [µmol Carbon Fixed/µmol Absorbed PPF] is defined by: 

CQY = CQYMAX for t < tQ 

CQY = CQYMAX – (CQYMAX – CQYMIN) ( )
( )QM

Q

tt
tt
−

−  for tQ < t < tM 
Equation 4-16 

where tM is time at crop harvest or maturity [dAE], and tQ is the time at onset of canopy senescence [dAE].  tM and 
tQ are model constants.  CQYMAX is a crop-specific function of PPF and [CO2], as noted below, while CQYMIN is 
a crop-specific constant. 

Carbon use efficiency (CUE) is defined as the amount of carbon incorporated into plant biomass divided 
by the total amount of carbon fixed during gross photosynthesis, thus accounting for losses of carbon due to 
respiration (Monje and Bugbee, 1998). The 24-hour carbon use efficiency, CUE24, a fraction, is constant for most 
crops.  In such cases, a single value is listed under CUEMAX in the tables below.  For legumes, CUE24 is described 
by: 

CUE24 = CUEMAX for t < tQ 

CUE24 = CUEMAX – (CUEMAX – CUEMIN) ( )
( )QM

Q

tt
tt
−

−  for tQ < t < tM 
Equation 4-17 

where CUEMAX and CUEMIN are model inputs unique to each crop. 
The daily carbon gain, DCG, [molCarbon/m²•d] is computed from: 

DCG = 0.0036
mol

mol
h
s
µ

 × H × CUE24 × A × CQY × PPF 
Equation 4-18 

where H is the photoperiod [h/d], a crop-specific model input.  Photoperiod may vary daily, but see Cavazzoni 
(2001) for the assumptions involved. 

The daily oxygen production, DOP, [ 2Omol
2Omol /m²•d] may be computed using: 

DOP = OPF × DCG Equation 4-19 

where OPF is the oxygen production fraction [ 2Omol
2Omol /mol Carbon], which is a crop specific parameter. 

The crop growth rate, CGR [g/m²•d], is related to DCG by: 

CGR = MWC 
BCF
DCG

 
Equation 4-20 

where MWC is the molecular weight of carbon, 12.011 g/mol, and BCF is the biomass carbon fraction, another 
crop-specific constant. 

The total crop biomass, on a dry basis, TCB [g/m²], is determined by integrating CGR, from t = 0 to the 
time of interest, such as harvest, tM.  Or: 

TCB = ∫
Mt

0
dtCGR  

Equation 4-21 

Total edible biomass, on a dry basis, TEB [g/m²], may be estimated by integrating the product of CGR 
and the fraction of daily carbon gain allocated to edible biomass, XFRT, from time storage organs begin to form, 
tE [dAE].  Both XFRT and tE are tabulated below.  Thus: 

TEB = ∫
M

E

t

t
dtCGRXFRT  

Equation 4-22 

Inedible biomass is the difference between TCB and TEB. 
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Table 4-104  Summary of Modified Energy Cascade Model Variables for Biomass Production  

 

 

 Variable Units Description Reference/Value 
A -- fraction of PPF absorbed by the plant canopy Equation 4-15 

AMAX -- maximum value for A 0.93 

BCF -- biomass carbon fraction Table 4-119 

CGR 
𝑔𝑔

𝑚𝑚2 ∙ 𝑑𝑑 crop growth rate Equation 4-20 

Ci varies coefficients in functions describing tA and CQYMAX Table 4-106 

[CO2] 
𝜇𝜇𝑚𝑚𝜇𝜇𝜇𝜇𝐶𝐶𝐶𝐶2
𝑚𝑚𝜇𝜇𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎

 
atmospheric concentration of carbon dioxide; 
model variable none 

CQY 
𝜇𝜇𝑚𝑚𝜇𝜇𝜇𝜇𝐶𝐶.𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹

𝜇𝜇𝑚𝑚𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴.𝑃𝑃𝑃𝑃𝐹𝐹
 canopy quantum yield Equation 4-16 

CQYMAX 
𝜇𝜇𝑚𝑚𝜇𝜇𝜇𝜇𝐶𝐶.𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹

𝜇𝜇𝑚𝑚𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴.𝑃𝑃𝑃𝑃𝐹𝐹
 maximum value for CQY that applies until tQ Equation 4-23 

CQYMIN 
𝜇𝜇𝑚𝑚𝜇𝜇𝜇𝜇𝐶𝐶.𝐹𝐹𝑎𝑎𝐹𝐹𝐹𝐹𝐹𝐹

𝜇𝜇𝑚𝑚𝜇𝜇𝜇𝜇𝐴𝐴𝐴𝐴.𝑃𝑃𝑃𝑃𝐹𝐹
 minimum value for CQY at tM Table 4-105 

CUE24 -- 24-hour carbon use efficiency; a fraction Equation 4-17 
CUEMAX -- maximum value for CUE24 that applies until tQ Table 4-105 
CUEMIN -- minimum value for CUE24 at tM Table 4-105 

DCG 
𝑚𝑚𝜇𝜇𝜇𝜇𝐶𝐶𝑎𝑎𝑎𝑎𝐴𝐴𝐶𝐶𝐶𝐶
𝑚𝑚2 ∙ 𝑑𝑑

 daily carbon gain Equation 4-18 

DOP 
𝑚𝑚𝜇𝜇𝜇𝜇𝐶𝐶2
𝑚𝑚2 ∙ 𝑑𝑑

 daily oxygen production Equation 4-19 

H h/d Photoperiod Table 4-117 
MWC g/mol molecular weight of carbon 12.011 

n -- an exponent Table 4-103 

OPF 
𝑚𝑚𝜇𝜇𝜇𝜇𝐶𝐶2

𝑚𝑚𝜇𝜇𝜇𝜇𝐶𝐶𝑎𝑎𝑎𝑎𝐴𝐴𝐶𝐶𝐶𝐶
 oxygen production fraction Table 4-119 

PPF 
𝜇𝜇𝑚𝑚𝜇𝜇𝜇𝜇𝑝𝑝ℎ𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶
𝑚𝑚2 ∙ 𝑠𝑠

 photosynthetic photon flux; model variable none 

TCB g/m² total crop biomass, on a dry basis Equation 4-21 

TEB g/m² total edible biomass, on a dry basis Equation 4-22 
t dAE time; model variable none 
tA dAE time until canopy closure Equation 4-31 
tE dAE time at onset of organ formation Table 4-118 
tM dAE time at harvest or crop maturity Table 4-118 
tQ dAE time until onset of canopy senescence Table 4-118 

XFRT -- fraction of daily carbon gain allocated to edible 
biomass after tE  Table 4-118 
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The environmentally dependent parameters for these models are provided in the sections below.  The MEC 
variables for biomass production models are summarized in Table 4-104 
Summary of Modified Energy Cascade Model Variables for Biomass ProductionGeneral model constants, which 
depend only on the crop cultivar and not on environmental conditions, are listed in Table 4-105. 

Table 4-105  Biomass Production Model Constants 204 

Crop Specific Cultivar 

CQYMIN 
[µmolC Fixed 
/µmolAb. PPF] CUEMAX CUEMIN 

Dry Bean Meso Amer. Hab. 1 – Determinate 0.02 0.65 0.50 205 
Lettuce Waldmann’s Green n/a 0.625 n/a 
Peanut Pronto 0.02 0.65 0.30 
Rice Early maturing types 0.01 0.64 n/a 
Soybean Hoyt 0.02 0.65 0.30 
Sweet Potato TU-82-155 (Tuskegee University) n/a 0.625 n/a 
Tomato Reinmann Philippe 75/59 0.01 0.65 n/a 
Wheat Veery 10 0.01 0.64 n/a 
White Potato Norland or Denali 0.02 0.625 n/a 

Based on multivariable polynomial regression, the functions for maximum canopy quantum yield, 
CQYMAX [µmol Carbon Fixed/µmol Absorbed PPF], have the general form: 

CQY MAX ( PPF, [CO2] )  =  C 1 PPF
1

]CO[
1

2

  +  C 2 PPF
1

  +  C 3 PPF
]CO[ 2   +  C 4 

PPF
]CO[ 2

2   +  C 5 
PPF

]CO[ 3
2   

+  C 6 
]CO[

1

2

  +  Constant  +  C 8 [CO2]  +  C 9 [CO2] 2  +  C 10 [CO2] 3  +  C 11 
]CO[

PPF

2

  +  C 12 PPF  

+  C 13 PPF [CO2]  +  C 14 PPF [CO2] 2  +  C 15 PPF [CO2] 3  +  C 16 
]CO[

PPF

2

2
  +  C 17 PPF 2  

+  C 18 PPF 2 [CO2]  +  C 19 PPF 2 [CO2] 2  +  C 20 PPF 2 [CO2] 3  +  C 21 
]CO[

PPF

2

3
  +  C 22 PPF 3  

+  C 23 PPF 3 [CO2]  +  C 24 PPF 3 [CO2] 2  +  C 25 PPF 3 [CO2] 3  
Equation 4-23 

where C1 through C25 again denote coefficients.  PPF is designated in [µmol/m²•s], while [CO2] is measured in 








µ

Air

CO

mol
mol

2 .  To simplify the presentation of these functions, Table 4-107 through Table 4-115 present the 

coefficient values for each crop in a matrix of the form presented in Table 4-106 

                                                           
204 The parameters in this table apply independent of temperature regime, photoperiod, or planting density. 
205 This suggested value is based on Wheeler (2001a) whereby growth costs are less for dry bean than for soybean and 

peanut. 
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Table 4-106  Format for Tables of Coefficients for Equations 
Employing Multivariable Polynomial Regression Fits 

 1/PPF 1 PPF PPF 2 PPF 3 

1/[CO2] 1/PPF × 1/[CO2] 
or C 1 

1/[CO2] 
or C 6 

PPF/[CO2] 
or C 11 

PPF 2/[CO2] 
or C 16 

PPF 3/[CO2] 
or C 21 

1 1/PPF 
or C 2 Constant Term PPF 

or C 12 
PPF 2 
or C 17 

PPF 3 
or C 22 

[CO2] 
[CO2]/PPF 

or C 3 
[CO2] 
or C 8 

PPF [CO2] 
or C 13 

PPF 2 [CO2] 
or C 18 

PPF 3 [CO2] 
or C 23 

[CO2] 2 [CO2] 2/PPF 
or C 4 

[CO2] 2 
or C 9 

PPF [CO2] 2 
or C 14 

PPF 2 [CO2] 2 
or C 19 

PPF 3 [CO2] 2 
or C 24 

[CO2] 3 [CO2] 3/PPF 
or C 5 

[CO2] 3 
or C 10 

PPF [CO2] 3 
or C 15 

PPF 2 [CO2] 3 
or C 20 

PPF 3 [CO2] 3 
or C 25 

The coefficients for CQYMAX are independent of photoperiod and planting density, and are only a weak 
function of temperature regime.  Thus, for life support crop-growth scenarios, the CQYMAX coefficients are 
essentially functions of the crop cultivar alone.  See Cavazzoni (2001) for applicability under extreme temperature 
ranges. 

Table 4-107  Maximum Canopy Quantum Yield, CQY MAX, Coefficients for Dry Bean 

 1/PPF 1 PPF PPF 2 PPF 3 
1/[CO2] 0 0 0 0 0 

1 0 4.191 × 10-2 -1.238 × 10-5 0 0 

[CO2] 0 5.3852 × 10-5 0 -1.544 × 10-11 0 

[CO2] 2 0 -2.1275 × 10-8 0 6.469 × 10-15 0 

[CO2] 3 0 0 0 0 0 

Table 4-108  Maximum Canopy Quantum Yield, CQY MAX, Coefficients for Lettuce 

 1/PPF 1 PPF PPF 2 PPF 3 
1/[CO2] 0 0 0 0 0 

1 0 4.4763 × 10-2 -1.1701 × 10-5 0 0 

[CO2] 0 5.163 × 10-5 0 -1.9731 × 10-11 0 

[CO2] 2 0 -2.075 × 10-8 0 8.9265 × 10-15 0 

[CO2] 3 0 0 0 0 0 

Table 4-109  Maximum Canopy Quantum Yield, CQY MAX, Coefficients for Peanut 

 1/PPF 1 PPF PPF 2 PPF 3 
1/[CO2] 0 0 0 0 0 

1 0 4.1513 × 10-2 0 -2.1582 × 10-8 0 

[CO2] 0 5.1157 × 10-5 4.0864 × 10-8 -1.0468 × 10-10 4.8541 × 10-14 

[CO2] 2 0 -2.0992 × 10-8 0 0 0 

[CO2] 3 0 0 0 0 3.9259 × 10-21 
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Table 4-110  Maximum Canopy Quantum Yield, CQY MAX, Coefficients for Rice 

 1/PPF 1 PPF PPF 2 PPF 3 
1/[CO2] 0 0 0 0 0 

1 0 3.6186 × 10-2 0 -2.6712 × 10-9 0 

[CO2] 0 6.1457 × 10-5 -9.1477 × 10-9 0 0 

[CO2] 2 0 -2.4322 × 10-8 3.889 × 10-12 0 0 

[CO2] 3 0 0 0 0 0 

Table 4-111  Maximum Canopy Quantum Yield, CQY MAX, Coefficients for Soybean 

 1/PPF 1 PPF PPF 2 PPF 3 
1/[CO2] 0 0 0 0 0 

1 0 4.1513 × 10-2 0 -2.1582 × 10-8 0 

[CO2] 0 5.1157 × 10-5 4.0864 × 10-8 -1.0468 × 10-10 4.8541 × 10-14 

[CO2] 2 0 -2.0992 × 10-8 0 0 0 

[CO2] 3 0 0 0 0 3.9259 × 10-21 

Note: The function for soybean here is identical to the function for peanut. 

Table 4-112  Maximum Canopy Quantum Yield, CQY MAX, Coefficients for Sweet Potato 

 1/PPF 1 PPF PPF 2 PPF 3 
1/[CO2] 0 0 0 0 0 

1 0 3.9317 × 10-2 -1.3836 × 10-5 0 0 

[CO2] 0 5.6741 × 10-5 -6.3397 × 10-9 -1.3464 × 10-11 0 

[CO2] 2 0 -2.1797 × 10-8 0 7.7362 × 10-15 0 

[CO2] 3 0 0 0 0 0 

Table 4-113  Maximum Canopy Quantum Yield, CQY MAX, Coefficients for Tomato 

 1/PPF 1 PPF PPF 2 PPF 3 
1/[CO2] 0 0 0 0 0 

1 0 4.0061 × 10-2 0 -7.1241 × 10-9 0 

[CO2] 0 5.688 × 10-5 -1.182 × 10-8 0 0 

[CO2] 2 0 -2.2598 × 10-8 5.0264 × 10-12 0 0 

[CO2] 3 0 0 0 0 0 

Table 4-114  Maximum Canopy Quantum Yield, CQY MAX, Coefficients for Wheat 

 1/PPF 1 PPF PPF 2 PPF 3 
1/[CO2] 0 0 0 0 0 

1 0 4.4793 × 10-2 -5.1946 × 10-6 0 0 

[CO2] 0 5.1583 × 10-5 0 -4.9303 × 10-12 0 

[CO2] 2 0 -2.0724 × 10-8 0 2.2255 × 10-15 0 

[CO2] 3 0 0 0 0 0 
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Table 4-115  Maximum Canopy Quantum Yield, CQY MAX, Coefficients for White Potato 

 1/PPF 1 PPF PPF 2 PPF 3 
1/[CO2] 0 0 0 0 0 

1 0 4.6929 × 10-2 0 0 -1.9602 × 10-11 

[CO2] 0 5.0910 × 10-5 0 -1.5272 × 10-11 0 

[CO2] 2 0 -2.1878 × 10-8 0 0 0 

[CO2] 3 0 0 4.3976 × 10-15 0 0 

4.14.1.7 MODIFIED ENERGY CASCADE MODELS FOR CROP TRANSPIRATION 

Following the approach in Section 4.14.1.6 for biomass production, this section focuses on a similar 
model to predict crop canopy transpiration.  In fact, the crop transpiration model employs many of the parameters 
computed by the algorithm above.  The model in this section was adapted from Monje (1998). 

The vapor pressure deficit, VPD [kPa], is the difference between the saturated vapor pressure for air at 
the mean atmospheric temperature, VPSAT [kPa], and the actual vapor pressure for the atmosphere, VPAIR [kPa].  
Or: 

VPSAT = 0.611 








+ 239T

T4.17

LIGHT

LIGHT

e  
VPAIR = VPSAT × RH 
VPD = VPSAT - VPAIR  Equation 4-24 

where TLIGHT [ C] is the mean atmospheric temperature during the crop’s light cycle and RH is the mean 
atmospheric relative humidity as a fraction bounded between 0 and 1, inclusive.  Calculation of VPSAT assumes 
that the temperature of the canopy leaves, from which transpiration originates, is equal to the mean light-cycle air 
temperature, TLIGHT. 

The gross canopy photosynthesis, PGROSS [µmolCarbon/m²•s], may be expressed in terms of previously 
defined values as: 

PGROSS = A × CQY × PPF Equation 4-25 

The net canopy photosynthesis, PNET [µmolCarbon/m²•s], may be expressed as: 

PNET = 






 ×
+

−

PG

24

PG

PG

D
CUEH

D
HD  PGROSS 

Equation 4-26 

where DPG [h/d] is the length of the plant growth chamber’s diurnal cycle.  During development of these models, 
Cavazzoni (2001) assumed a value of 24.0 h/d for DPG, which is consistent with ground-based data gathered to 
date. 
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Table 4-116  Summary of Modified Energy Cascade Model Variables for Canopy Transpiration  

 

 

The canopy surface conductance, gC [molWater/m²•s], is based on the canopy stomatal conductance, gS 
[molWater/m²•s], and the atmospheric aerodynamic conductance, gA [molWater/m²•s]. 

gC = 
SA

SA

gg
gg

+
×  

Equation 4-27 

                                                           
206 This value applies to data used to date from terrestrial test facilities.  More generally, it’s the length of a local sol. 
207 For the nominal case, assume the photoperiod, H, equals the nominal photoperiod, HO, which is listed in Table 4-117. 

Variable Units Description Reference/Value 
A -- fraction of PPF absorbed by the plant canopy Equation 4-15 

[CO2] 
Air

CO

mol
mol

2
µ

 atmospheric concentration of carbon dioxide; 
model variable none 

CQY 
Photon

Carbon

mol
mol
µ
µ  canopy quantum yield Equation 4-16 

CUE24 -- 24-hour carbon use efficiency; a fraction Equation 4-17 
DPG h/d plant growth diurnal cycle 24 206 
DTR LWater/m²•d daily canopy transpiration rate Equation 4-30 

gA molWater/m²•s atmospheric aerodynamic conductance Equation 4-28 and 
Equation 4-29 

gC molWater/m²•s canopy surface conductance Equation 4-27 

gS molWater/m²•s canopy stomatal conductance Equation 4-28 and 
Equation 4-29 

H h/d photoperiod; model variable none 207 
HO h/d nominal photoperiod Table 4-117 

MWW g/mol molecular weight of water 18.015 
PATM kPa total atmospheric pressure; model variable none 

PGROSS 
sm

mol
2

Carbon

•

µ  gross canopy photosynthesis Equation 4-25 

PNET 
sm

mol
2

Carbon

•

µ  net canopy photosynthesis Equation 4-26 

PPF 
sm

mol
2

Photon

•

µ  photosynthetic photon flux; model variable none 

PPFE 
sm

mol
2

Photon

•

µ  effective photosynthetic photon flux Equation 4-32 

RH -- atmospheric relative humidity; model variable none 
TLIGHT  C atmospheric temperature during crop’s light cycle Table 4-117 
VPAIR kPa actual moisture vapor pressure Equation 4-24 
VPSAT kPa saturated moisture vapor pressure Equation 4-24 
VPD kPa vapor pressure deficit Equation 4-24 
ρW g/L density of water 998.23 
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The following models for gS and values for gA were derived from the experimental conditions studied by 
Monje (1998). 

With planophile-type canopies, such as for dry bean, lettuce, peanut, soybean, sweet potato, tomato, and 
white potato, gS and gA are computed as: 

gS = ( ) [ ]






−−

2

NET
LIGHT CO

P
VPD54.1096.19T717.1  

gA = 2.5 Equation 4-28 

With erectophile canopies, such as for rice and wheat, gS and gA have the form: 

gS = 
[ ]






+

2

NET

CO
PRH32.151389.0  

gA = 5.5 Equation 4-29 

The daily canopy transpiration rate, DTR [L Water/m²•d], is: 

DTR = 3600
h
s

 H 








ρW

WMW  gC 









ATMP
VPD  

Equation 4-30 

where PATM [kPa] is the total atmospheric pressure, MWW is the molecular weight of water, 18.015 g/mol, and ρW 
is the density of water, 998.23 g/L at 20  C. 
The parameters for the transpiration model are provided in the sections below and the variables are summarized 
in   
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Table 4-116. 
4.14.1.7.1 MODIFIED ENERGY CASCADE MODEL CONSTANTS FOR NOMINAL TEMPERATURE REGIMES AND 

PHOTOPERIODS 
For nominal temperature regimes and photoperiods, MEC model constants are provided here for the 

parameters in Section 4.14.1.6 and Section 4.14.1.7. 
Note: Some values in Table 4-117 differ from the corresponding values listed in Table 4.87  

Table 4-117  Nominal Temperature Regimes, Planting Densities, and Photoperiods 
for the Plant Growth and Transpiration Models 

Crop 

Nominal 
Photoperiod 

HO 
[h/d] 

Planting 
Density 208 
[plants/m²] 

Light Cycle 
Temperature,  

TLIGHT 
[ C] 

Dark Cycle 
Temperature,  

TDARK 209 
[ C] 

Dry Bean 12 7 26 22 
Lettuce 16 19.2 23 23 
Peanut 12 7 26 22 
Rice 12 200 29 21 
Soybean 12 35 26 22 
Sweet Potato 18 16 28 22 
Tomato 12 6.3 26 22 
Wheat 20 720 23 23 
White Potato 12 6.4 20 16 

Table 4-118  Biomass Production Model Time Constants for Nominal Temperature Regime 
and Photoperiod 

Crop 

Fraction of 
Edible 

Biomass 
After tE 
XFRT 

Time at Onset 
of Edible 
Biomass 

Formation, 
tE 

[dAE] 

Time at Onset 
of Canopy 

Senescence, 
tQ 

[dAE] 

Time at 
Harvest, 

tM 
[dAE] 

Dry Bean 0.97 40 42 63 
Lettuce 0.95 1 n/a 210 30 
Peanut 0.49 49 65 110 
Rice 0.98 57 61 88 
Soybean 0.95 46 48 86 
Sweet Potato 1.00 33 n/a 210 120 
Tomato 0.70 41 56 80 
Wheat 1.00 34 33 62 
White Potato 1.00 45 75 138 211 

                                                           
208 Planting density affects the time to canopy closure, tA, even though an explicit functionality is not apparent. 
209 The MEC models do not explicitly use the dark cycle temperature, but because the dark cycle temperature affects a 

crop’s development, these values are assumed implicitly for this set of parameters. 
210 This crop is harvested before the canopy reaches senescence. 
211 White potato plants are harvested at t = 105 dAE, but tM = 138 dAE is used for the models. 
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Table 4-119  Biomass Carbon and Oxygen Production Fractions for Nominal Temperature Regime 
and Photoperiod 

Crop 

Biomass 
Carbon 

Fraction, 
BCF 

Oxygen 
Production 
Fraction, 

OPF 
[mol O2/mol C] 

 

Crop 

Biomass 
Carbon 

Fraction, 
BCF 

Oxygen 
Production 
Fraction, 

OPF 
[mol O2/mol C] 

Dry Bean 0.45 1.10  Sweet Potato 0.44 1.02 
Lettuce 0.40 1.08  Tomato 0.42 1.09 
Peanut 0.50 1.19  Wheat 0.44 1.07 
Rice 0.44 1.08  White Potato 0.41 1.02 
Soybean 0.46 1.16     

The functions for the canopy closure time, tA [dAE], have the general form: 

tA ( PPFE, [CO2] )  =  C 1 
EPPF

1
]CO[

1

2

  +  C 2 
EPPF

1   +  C 3 
E

2

PPF
]CO[   +  C 4 

E

2
2

PPF
]CO[   +  C 5 

E

3
2

PPF
]CO[   

+  C 6 
]CO[

1

2

  +  Constant  +  C 8 [CO2]  +  C 9 [CO2] 2  +  C 10 [CO2] 3  +  C 11 
]CO[

PPF

2

E   +  C 12 PPFE  

+  C 13 PPFE [CO2]  +  C 14 PPFE [CO2] 2  +  C 15 PPFE [CO2] 3  +  C 16 
]CO[

PPF

2

2
E   +  C 17 PPFE

 2  

+  C 18 PPFE
 2 [CO2]  +  C 19 PPFE

 2 [CO2] 2  +  C 20 PPFE
 2 [CO2] 3  +  C 21 

]CO[
PPF

2

3
E   +  C 22 PPFE

 3  

+  C 23 PPFE
 3 [CO2]  +  C 24 PPFE

 3 [CO2] 2  +  C 25 PPFE
 3 [CO2] 3  

Equation 4-31 

where C1 through C25 denote coefficients.  PPFE is expressed in [µmol/m²•s], while [CO2] is measured in








µ

Air

CO

mol
mol

2 .  To simplify the presentation of these functions, Table 4-120 through Table 4-128 present the 

coefficient values for each crop in a matrix using the form of Table 4-106 above. 

The effective photosynthetic photon flux, PPFE [µmol/m²•s], (Rodriguez and Bell, 2004) is: 

PPFE = PPF 









OH
H  

Equation 4-32 

where values for nominal photoperiod, HO [h/d], are tabulated in Table 4-117 

Table 4-120  Canopy Closure Time, tA, Coefficients for Dry Bean with Nominal Conditions 

 1/PPFE 1 PPFE PPFE 2 PPFE 3 
1/[CO2] 2.9041 × 10 5 0 0 0 0 

1 1.5594 × 10 3 15.840 6.1120 × 10 –3 0 0 

[CO2] 0 0 0 - 3.7409 × 10 -9 0 

[CO2] 2 0 0 0 0 0 

[CO2] 3 0 0 0 0 9.6484 × 10 –19 
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Table 4-121  Canopy Closure Time, tA, Coefficients for Lettuce with Nominal Conditions 

 1/PPFE 1 PPFE PPFE 2 PPFE 3 
1/[CO2] 0 0 1.8760 0 0 

1 1.0289 × 10 4 1.7571 0 0 0 

[CO2] - 3.7018 0 0 0 0 

[CO2] 2 0 2.3127 × 10 -6 0 0 0 

[CO2] 3 3.6648 × 10 -7 0 0 0 0 

Table 4-122  Canopy Closure Time, tA, Coefficients for Peanut with Nominal Conditions 

 1/PPFE 1 PPFE PPFE 2 PPFE 3 
1/[CO2] 3.7487 × 10 6 - 1.8840 × 10 4 51.256 - 0.05963 2.5969 × 10 -5 

1 2.9200 × 10 3 23.912 0 5.5180 × 10 –6 0 

[CO2] 0 0 0 0 0 

[CO2] 2 0 0 0 0 0 

[CO2] 3 9.4008 × 10 –8 0 0 0 0 

Table 4-123  Canopy Closure Time, tA, Coefficients for Rice with Nominal Conditions 

 1/PPFE 1 PPFE PPFE 2 PPFE 3 
1/[CO2] 6.5914 × 10 6 - 3.748 × 10 3 0 0 0 

1 2.5776 × 10 4 0 0 4.5207 × 10 –6 0 

[CO2] 0 - 0.043378 4.562 × 10 –5 - 1.4936 × 10 –8 0 

[CO2] 2 6.4532 × 10 –3 0 0 0 0 

[CO2] 3 0 0 0 0 0 

Table 4-124  Canopy Closure Time, tA, Coefficients for Soybean with Nominal Conditions 

 1/PPFE 1 PPFE PPFE 2 PPFE 3 
1/[CO2] 6.7978 × 10 6 - 4.326 × 10 4 112.63 - 0.13637 6.6918 × 10 –5 

1 - 4.3658 × 10 3 33.959 0 0 - 2.1367 × 10 –8 

[CO2] 1.5573 0 0 0 1.5467 × 10 –11 

[CO2] 2 0 0 - 4.911 × 10 –9 0 0 

[CO2] 3 0 0 0 0 0 

Table 4-125  Canopy Closure Time, tA, Coefficients for Sweet Potato with Nominal Conditions 

 1/PPFE 1 PPFE PPFE 2 PPFE 3 
1/[CO2] 1.2070 × 10 6 0 0 0 4.0109 × 10 –7 

1 4.9484 × 10 3 4.2978 0 0 0 

[CO2] 0 0 0 0 2.0193 × 10 –12 

[CO2] 2 0 0 0 0 0 

[CO2] 3 0 0 0 0 0 
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Table 4-126  Canopy Closure Time, tA, Coefficients for Tomato with Nominal Conditions 

 1/PPFE 1 PPFE PPFE 2 PPFE 3 
1/[CO2] 6.2774 × 10 5 0 0.44686 0 0 

1 3.1724 × 10 3 24.281 5.6276 × 10 -3 - 3.0690 × 10 –6 0 

[CO2] 0 0 0 0 0 

[CO2] 2 0 0 0 0 0 

[CO2] 3 0 0 0 0 0 

Table 4-127  Canopy Closure Time, tA, Coefficients for Wheat with Nominal Conditions 

 1/PPFE 1 PPFE PPFE 2 PPFE 3 
1/[CO2] 9.5488 × 10 4 0 0.3419 - 1.9076 × 10 –4 0 

1 1.0686 × 10 3 15.977 1.9733 × 10 –4 0 0 

[CO2] 0 0 0 0 0 

[CO2] 2 0 0 0 0 0 

[CO2] 3 0 0 0 0 0 

Table 4-128  Canopy Closure Time, tA, Coefficients for White Potato with Nominal Conditions 

 1/PPFE 1 PPFE PPFE 2 PPFE 3 
1/[CO2] 6.5773 × 10 5 0 0 0 0 

1 8.5626 × 10 3 0 0.042749 - 1.7905 × 10 –5 0 

[CO2] 0 0 8.8437 × 10 –7 0 0 

[CO2] 2 0 0 0 0 0 

[CO2] 3 0 0 0 0 0 

For certain crops under low-lighting conditions, the relationships above for tA and AMAX require 
modification.  Physically, the canopy does not close under low light, so AMAX does not reach 0.93, for the nominal 
photoperiod and planting densities listed in Table 4-117.  Thus, to use the models above under such conditions and 
obtain reasonably accurate results, modified values for the time at canopy closure, tA, and the maximum fraction 
of PPF absorbed by the plant canopy, AMAX, are required.  Table 4-129 provides modified values for the conditions 
listed, where tA is the time until the listed AMAX is attained.  The nominal photoperiods and planting densities 
associated with these values are also given for reference, and they are consistent with values provided in Table 
4-117 above. 
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Table 4-129  MEC Model Parameters for Low-Light Conditions, Nominal Temperature Regimes 

Crop 

Photo-
period 
[h/d] 

Planting 
Density 

[plants/m²] 
PPF 

[µmol/m²•s] 
[CO2] 

[µmol/mol] 
tA 

[dAE] AMAX 

Lettuce 

16 19.2 
200 

330 32 0.18 
660 32 0.35 
990 32 0.46 

1,320 32 0.49 
300 330 32 0.75 

Rice 

12 200 

200 

330 45 0.13 
660 45 0.21 
990 45 0.26 

1,320 45 0.28 

300 

330 50 0.33 
660 50 0.50 
990 50 0.59 

1,320 50 0.62 

400 

330 50 0.57 
660 50 0.75 
990 50 0.82 

1,320 50 0.83 

Sweet 
Potato 

18 16 
200 

330 30 0.58 
660 30 0.76 
990 30 0.84 

1,320 30 0.86 
300 330 31 0.90 

White 
Potato 

12 6.4 
200 

330 36 0.34 
660 38 0.49 
990 38 0.58 

1,320 39 0.60 

300 
330 40 0.80 
660 42 0.90 

MEC model constants for additional temperature regimes are reported in Cavazzoni (2001). 
 
 

 PLANETARY PROTECTION 

4.15.1 WHAT DESIGNS DECREASE THE PROBABILITY OF CONTAMINATING MARS AND EARTH? 
NASA possesses several policy documents describing necessary constraints on missions traveling to and 

from extraterrestrial bodies that either may harbor indigenous life or could support terrestrial life.  Two documents 
(NPD 8020.7G, 2013, and NPR 8020.12D, 2011) describe the processes NASA uses to comply with international 
agreements (UN, 1967, and COSPAR, 2005) to ensure that robotic probes do not contaminate potentially sensitive 
extraterrestrial destinations that may support their own indigenous life and to ensure that any samples returned 
from those targets do not release extraterrestrial life forms to Earth.  Two documents (NPD 8900.5B, 2011, and 



Life Support Baseline Values and Assumptions Document, NASA/TP-2015-218570, Rev1 January 2018 

 

  199 

NPR 8900.1A, 2012) describe how crew members are to be protected while operating in an extraterrestrial 
environment where extraterrestrial life forms may be present. 

What is missing, however, are NASA-approved and published guidance to address potential planetary 
protection for vehicles carrying human crews.  The NASA Planetary Protection Officer is developing appropriate 
procedures and requirements to govern missions with human crews to Mars and other sensitive extraterrestrial 
destinations.  Spry (2013) provides some preliminary material that may become part of the final NASA documents.  
Spry (2013) begins with four general principles: 

1. “Safeguarding the Earth from potential back contamination is the highest planetary protection 
priority in Mars exploration.” 

2. “The greater capability of human explorers can contribute to the astrobiological exploration of 
Mars only if human-associated contamination is controlled and understood.” 

3. “For a landed mission conducting surface operations, it will not be possible for all human 
associated processes and mission operations to be conducted within entirely closed systems.” 

4. “Crewmembers exploring Mars, or their support systems, will inevitably be exposed to martian 
materials.” 

Spry (2013) also provides several implementation guidelines, with those applicable to the present 
discussion being: 

1. “Human missions will carry microbial populations that will vary in both kind and quantity, and 
it will not be practicable to specify all aspects of an allowable microbial population or potential 
contaminants at launch. Once any baseline conditions for launch are established and met, 
continued monitoring and evaluation of microbes carried by human missions will be required 
to address both forward and backward contamination concerns.” 

2. “A quarantine capability for both the entire crew and for individual crewmembers shall be 
provided during and after the mission, in case potential contact with a martian life-form 
occurs.” 

3. “A comprehensive planetary protection protocol for human missions should be developed that 
encompasses both forward and backward contamination concerns, and addresses the combined 
human and robotic aspects of the mission, including subsurface exploration, sample handling, 
and the return of the samples and crew to Earth.” 

4. “Neither robotic systems nor human activities should contaminate “Special Regions” 212 on 
Mars, as defined by this [Committee on Space Research (COSPAR)] 213 policy.” 

5. “An onboard crewmember should be given primary responsibility for the implementation of 
planetary protection provisions affecting the crew during the mission.” 

6. “Planetary protection requirements for initial human missions should be based on a 
conservative approach consistent with a lack of knowledge of martian environments and 
possible life, as well as the performance of human support systems in those environments. 
Planetary protection requirements for later missions should not be relaxed without scientific 
review, justification, and consensus.” 

Spry (2013) recommends the following approach regarding introduction of ECLSS waste streams to the 
Martian environment: 

                                                           
212 Special regions are defined by COSPAR as domains that may either support extraterrestrial life or terrestrial life 

(COSPAR, 2005).  Beaty, et al. (2006) define special regions quantitatively for NASA, to comply with COSPAR 
(2005), as a region where the temperature rises above –20 °C and the water activity is 0.5 or above. 

213 COSPAR is an international body that, among other functions, defines protocols to comply with the Outer Space Treaty 
(UN, 1967).  COSPAR’s planetary protection requirements are detailed in COSPAR (2005). 
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“On the specific issue of waste streams, presuming that they are identified as having biologic or organic 
components (that could confound [planetary protection] efforts if released in an uncontrolled fashion), 
they should be filtered or otherwise processed prior to release/disposal (e.g., maybe [high-efficiency 
particulate air] filter of gases, autoclaving of solid/liquid wastes).” 

4.15.2 BACKWARD CONTAMINATION 
The general principles and implementation guidelines above can be reduced to a few points in the context 

of ECLSS architecture and preventing backward contamination. 

4.15.2.1 SAFEGUARD EARTH 

Safeguarding Earth from any type of backward contamination is the principle of greatest importance.  No 
unconstrained extraterrestrial life forms should be allowed to reach Earth either in returned samples or as an 
infection to the crew. 

4.15.2.2 HUMAN SURFACE SYSTEMS WILL NOT BE COMPLETELY CLOSED 

As currently envisioned, human surface systems will not be completely closed because in order for human 
beings to investigate the martian surface they must leave their habitat to conduct EVAs.  This mechanism of 
departing the surface habitat enables a process by which the crew and/or the habitat are either intentionally or 
unintentionally exposed to martian materials in an uncontrolled manner. 

4.15.2.3 PROVIDE A QUARANTINE CAPABILITY 

When crewmembers are exposed to martian materials and, possibly, to martian life forms, a quarantine 
capability is necessary to segregate the affected crewmembers from the rest of the crew while determining the 
severity and effects of the exposure. 

4.15.2.4 USE CONSERVATIVE APPROACHES INITIALLY 

The initial approaches for all surface habitat systems, including the ECLSS architecture, should be 
conservative.  While future missions could potentially use more relaxed protocols once the martian surface is 
determined to be biologically benign based upon thorough scientific examination, the overall ECLSS architecture 
is likely to remain mostly unchanged except as necessary to correct any design or operational deficiencies. 

4.15.3 FORWARD CONTAMINATION 
In like manner, the general principles and implementation guidelines provide some guidance on 

preventing forward contamination of the Martian environment via the ECLSS architecture. 

4.15.3.1 CONTROL AND UNDERSTAND HUMAN-ASSOCIATED CONTAMINATION 

Terrestrial biomarkers released on the martian surface may confound any planetary science, so such 
events are to be avoided to preserve the integrity of planetary science.  Historically, some lunar samples collected 
by Project Apollo contained water with the same elemental isotopes as terrestrial water.  Because the Apollo heat 
rejection technologies for both the Lunar Module and the EVA space suit used vaporization of water to reject 
thermal loads, a possible explanation for the lunar water is that Apollo mission elements deposited it upon the 
samples before collection (Glavin, et al., 2010).  Another possible explanation is that the same mechanism that 
delivered water to Earth also provided the water found in the lunar samples.  However, because Apollo surface 
assets potentially provided the observed water, a contamination scenario cannot be rejected without reasonable 
doubt remaining, so the mission elements themselves unintentionally confounded the planetary science. 

Microbial terrestrial biomarkers are an intimate and vital part of any healthy human being.  Indeed, 
separating the symbiotic microorganisms from the human being will eventually kill that human being.  Because 
the symbiotic microorganisms cannot be removed from a human being, they are part of the potential terrestrial 
load that is part of any human crew.  For a robotic probe, COSPAR (2005) requires prior to launch a detailed 
catalog of all substances comprising components of the probe that are intended to reach the Martian surface.  
Further, the microbial loading for a probe going to the Martian surface is to be significantly reduced, with the level 
of reduction dependent upon the intent of the mission and its expected interaction with potentially sensitive regions 
of Mars (COSPAR, 2005).  Similar restrictions are impractical for a human crew because human beings cannot be 
segregated from their symbiotic microorganisms and because biological creatures are much harder to definitively 
catalog for constitutive compounds compared with mechanical structures.  Further, the composition of a living 
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human being changes with time on much shorter timescales and in a less predictable manner than for a mechanical 
structure that may exhibit oxidation and similar surface degradation due to chemical interactions with the 
environment.  In summary, human-associated contamination varies more widely than probe-associated 
contamination, and understanding this contribution from a human crew is essential for guarding and interpreting 
planetary science while using human beings as direct investigators on the Martian surface. 

4.15.3.2 HUMAN SURFACE SYSTEMS WILL NOT BE COMPLETELY CLOSED 

Human surface systems, if based upon or are similar to current technology, are unlikely to be completely 
closed, so terrestrial biomarkers could have an avenue to escape from the interior of human surface systems.  
Terrestrial biomarkers include living or recent deceased terrestrial microorganisms and any organic compounds 
produced by or incorporated within a terrestrial organism.  As noted above, deposition of terrestrial biomarkers 
may confound Martian planetary science.  Thus, even without complete isolation of human surface systems from 
the Martian environment, it is essential to inhibit the transfer of terrestrial biomarkers into areas of the Martian 
environment where those biomarkers may contaminate potential samples used to understand the evolution of the 
Martian environment.  Therefore, as specifically recommended by Spry (2013), any discharge streams should be 
filtered to contain any terrestrial biomarkers within the human-occupied volume. 

4.15.3.3 DO NOT AFFECT “SPECIAL REGIONS” 

As noted above, special regions are those areas of Mars that may either be a haven for terrestrial life, if 
released into the Martian environment, or they may support indigenous Martian life. 214  To truly maximize 
planetary science, terrestrial biomarkers must not be allowed to contaminate these areas prior to investigating them 
thoroughly.  If Martian life is discovered, such areas may remain perpetually excluded from willful terrestrial 
contamination.  Current approaches within Mars DRA 5.0 (Drake, 2009a) envision using sterilized robotic 
assistants for initial exploration of any special regions near a human landing site both to ensure the planetary 
science and to reduce the likelihood of accidental human exposure to Martian life forms. 

 
  

                                                           
214 Though far from a certainty, the underlying assumption is that Martian life will require similar conditions to those 

required by terrestrial life.  Certainly for terrestrial life to flourish on Mars, the conditions must be sufficient to support 
that life.  That Martian life will flourish only under similar conditions as those required for terrestrial life remains an 
active area of research. 
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6 APPENDICES 
6.1 APPENDIX A - ACRONYMS AND ABBREVIATIONS215   

Symbol Definition Symbol Definition 
ALS Advanced Life Support I/X ion exchange 

ALS RD ALS Requirements Document LAT Lunar Architecture Team 
ATCS active thermal control system LL Lunar Lander 
Areal 

Density 
Two dimensional distribution of mass g/cm2 LMLSTP Lunar Mars Life Support Test Program 

(integrated test) 
BDB Bioastronautics Data Book LO Lunar Orbiter  

BIO-Plex Bioregenerative Planetary Life Support 
Systems Test Complex 

MAG Maximum Absorption Garment (for EMU) 

  MCA Major Constituents Analyzer 
BPC Biomass Production Chamber at KSC MEC Modified Energy Cascade models 

  MORD Medical Operation Requirements Document 
BVAD Baseline Values and Assumptions Document 

(This document) 
MSIS Man-Systems Integration Standards 

BGI Bubble Growth Index MW molecular weight or Megawatt if used as a unit 
(See below.) 

CI controlled inorganic (compound) n/a not applicable 
CM Number of crew or crew members NASA National Aeronautics and Space Administration 
CO2 carbon dioxide NRC National Research Council 

COPS overall system thermodynamic coefficient of 
performance 

O2 Oxygen 

CQ Crew quarters p[gas] partial pressure exerted by gas 
CTMP crewtime-mass-penalty [kg/CM-h] PAR photosynthetically active radiation 
CTSD Crew and Thermal Systems Division pH potential of hydrogen 
CxP Constellation Program PLSS portable life support system 
dw dry mass (dry “weight”) PPF photosynthetic photon flux 

EATCS external active thermal control system PV Photovoltaic 
ELS Exploration Life Support (Project) RDA recommended dietary allowance 
EMC Environmental Monitoring and Control 

(Interface) 
RMD Reference Missions Document 

EMU extravehicular mobility unit (space suit) RS system composite thermal resistance 
ESCG Engineering and Sciences Contract Group SI Système Internationale d’Unités 

(Metric System) 
ESM equivalent system mass SIMA Systems Integration, Modeling, and Analysis 

(element of ELS Project) 
ESM GD ESM Guidelines Document SMAC spacecraft maximum allowable concentration 

ETCS external thermal control system SODB Shuttle Operational Data Book 
EVA extravehicular activity SP100 type of nuclear reactor 
ffm frozen food mass STS space transportation system 
fw fresh mass (fresh “weight”) SVCHp solar vapor-compression heat pump 

GSC grab sample containers SWEG Spacecraft Water Exposure Guidelines 
HPS high pressure sodium, a type of lamp TBD to be determined 
ISRU in-situ resource utilization TRRJ thermal radiator rotary joint 
ISS International Space Station VO2 max maximal rate of oxygen uptake by the whole-

body during exercise 
  VOC Volatile organic compound 

IST Invariantly-Scheduled Time VST Variably-Scheduled Time 
  USOS United States Operating Segment 

ITCS internal thermal control system w/ With 
IUPAC International Union of Pure and Applied 

Chemistry 
w/o without 

IVA intra vehicular activity 
RFŴ

RFŴ  

specific power consumption for a cooled volume 
within a cabinet 

JCPC Joint Crew Provisioning Catalog WRS Water Recovery System 
JSC Johnson Space Center   
KSC Kennedy Space Center   
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215 Symbols specific to the crop models in Section 4.14.1.6 are defined in  
Table 4-104 and 
 
Table 4-116 
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6.2 APPENDIX B - ABBREVIATIONS FOR UNITS 

Symbol Actual Unit Physical Correspondence 
Btu British thermal unit energy (English) 
°C degrees Centigrade temperature 
CM Crewmember person 

CM-d crewmember-day crewtime 
CM-h crewmember-hour crewtime 

CM-wk crewmember-week crewtime 
CM-℘ crewmember-menstrual period crewtime 

c centi- prefix 
d Day time 
°F degrees Fahrenheit temperature (English) 
ft Foot length (English) 
g Gram mass 
H 
Ht 

Hour 
Height 

Time 
length 

IU International Unit see specific usage 
J Joule energy 
K Kelvin absolute temperature 
k kilo- prefix 

kW Kilowatt power 
kWe kilowatt electric electric power 
kWth kilowatt thermal thermal heat 

L Liter volume 
lbm pounds (mass) mass (English) 
M mega- prefix 

MWe megawatt electric electric power 
m Meter length 
m² square meter area 
m3 cubic meter volume 
m milli- prefix 

meq/L milli-equivalents per liter concentration 
min Minute time 
mol Mole mole 
N Newton force 
Pa Pascal pressure 

ppm parts per million concentration 
psia pounds (force) per square inch, absolute absolute pressure (English) 

S Siemens conductivity 
s Second time 

W Watt power 
wk Week time 
y Year time 
µ micro- Prefix 
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