Helios-Lune Tranguillitas:

Artemis III Exploration Mission & Retrieval of Solar Activity Records

Madhu Thangavelu¹, Ciara Brown²

Department of Astronautical Engineering, Viterbi School of Engineering, University of Southern California

01. Introduction

Helios Lune Tranquillitas (HLT) is a commercial-government partnership Artemis III lunar exploration mission to the Mare Tranquillitatis pit crater.

02. Solar Activity Record (SolAR) Data

- The lunar surface has been exposed to the space environment for billions of years and solar activity records have accumulated over
- The HLT mission allows the Artemis III crew to obtain samples of paleoregolith, which could provide an undisturbed solar record that greatly surpasses the record we can obtain on Earth
- The mission aligns with the Artemis program's objectives through: Revealing ancient SolAR data
- Lava studies that provide insight into past lunar planetary processes

SolARs imprinted on the long dormant Moon can provide critical data about solar behavior over geological time that is vital to building a reliable Climate Change model for Earth.

RATIONALE

Objectives:

NASA Exploration Needs, Goals &

programs of (a) science, (b)

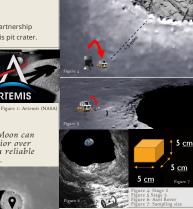
US Space Policy Goals:

space sector

Advance US scientific, security and

Robust, innovative and commercial

economic interests throughout robust


aeronautics and (c) space exploration

ARTEMIS

03. Mission Objectives

- Observation and scientific 1. exploration of the lunar pit crater
- 2. To obtain samples for Earth
- return and analysis* Samples are obtained from the talus pile and sunlit
- wall The mission location and sampling strategy allows for solar activity record (SolAR) data to be analyzed from

the sample layers upon return to Earth.									
Timeline Day 01			Day 02			Day 03	Dav	04	Sample return
34) 01		Day VJ			Day		to Earth		
		Lunar Lander	т. т	ravel to pit edge		Axel descent,		Equipment pack-up	
		Touchdown	2. A	Axel set-up and tethering anchors		scientific	2.	Crew Exploration	
		Pressurized Rover				observation and ascent		Return to Lunar Lander	
	4.	Deployment							
		Deployment				ascene		Lunder	

05. Onboard Scientific Payload

Spectrometer

In-situ spectral analysis of samples. Amount and type of chemical elements in top

 Light-weight ground penetrating radar (GPR)

To visualize any underground structures an formations

3D laser scanning

capabilities (OPAL) Lava tube scanning capabilities to provide preliminary data on lava tubes as a sustained lunar human habitat

04. Mission Stages

Stage 1: Lunar Lander Touchdown

· Touchdown location safe distance from pit and accessible within a day

Stage 2: Pressurized Rover Deployment

- · Once deployed, the pressurized rover is driven by the crew from the landing site to rim of the pit crater
- The rover is a mobile habitat

Stage 3: Axel Rover Deployment

 Mission specific version of the IPL Moon Diver Axel Rover concept Samples gathered automatically by rappelling into the pit crater

· Axel is controlled by the crew using real-time telerobotic systems

Stage 4: Axel Rover Rappel

- · Axel has two tether anchor points for redundancy (TBD)
- · Slow descent to clear debris
- · Wide and narrow lens camera imaging with crew obtaining imaging live feed

Stage 5: Talus Pile Sampling

· Confirmation of touchdown to crew and two samples acquired

Stage 6: Scientific Observation

· Scientific Payloads utilized (see Section 05 below)

Stage 7: Axel Ascent

- Follow path cleared by debris on descent
- Obtain wall samples by drilling

figure 8: Lava Tube figure 9 GPR

figure 10: Spectrometer

Wall sample intervals of -5m (TBD) from multiple lava lavers

06. Commercial Human Spaceflight Exploration (CHASÉ)

- Mission stage development open to
- worldwide space agencies and commerce International scientific collaboration and
- cooperation Research proposals for sample analysis Data analysis to be globally available

07. Future Research

- Sample retrieval without disrupting layers
- Maximum vield SolAR retrieval method
- Avalanche risk Moon gravity rappel
- · Below lava layer drilling equipment
- Additional sampling locations
- Lava tube exploration for human habitability (LAVA-T)

Axel Rover Rappel

08. References

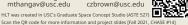
Adkins, B. D., Thangavelu, M., & Asher,(2021) J. LAVA-T: Lava Tube Access via Aerial Tether The Lunar Underground. USC ARTE-MIS TWINS Project

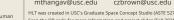
MIS TWINS Project Beer, J., Mende, W., & Stellmacher, R. (2000). The role of the sun in climate forcing Quaternary Science Reviews, 19(1-5), 403-415. Crawford, I. A., Joy, K. H., Pasckert, J. H., & Hiesinger, H. (2021). The lunar surface as a recorder of astrophysical processes. Philosophical Transactions of the Royal Society A, 379(2188), 20190562. 'he National Space Policy. Retrieved 2021, from

The National Space Policy, Retrieved 2021, Irom https://www.fcdarafregister.gov/d2020-27892/01-66 Federal Register (2020). Gray, https://www.fcdarafregister.gov/d2020-27892/01-66 Federal Register (2020). Gray, Reviews of Geophysics, 24(4). Harvyama, J., Hoki, K., Shirao, M., Morota, T., Hesinger, H., van der Bogert, C. H., ... & Pitters, C. M. (2009). Possible lunar lava tube skylight observed by SELENE Cumeras: G. Research Letters, 36(2). Hoyt, D. V., Hoyt, D. W., Schatten, K. H., & M. (2019). Possible lunar lava tube skylight observed by SELENE Cumeras: G. Research Letters, 36(2). Hoyt, D. V., Hoyt, D. W., Schatten, K. H., & M. (2019). Possible lunar lava tube skylight observed by SELENE Cumeras: G. Research Letters, 36(2). Hoyt, D. V., Hoyt, D. W., Schatten, K. H., & M. (2019). Possible lunar lava tube skylight observed by SELENE (2019). Pos

hatten, K. H. (1997)

Schatten, K. H. (1997). The role of the sum in climate change. Oxford University Press. Phore 2019. A second second second second second second second second second parcher, L. C. (2018). Mosca difficult discussion of a lunar marce pick to the second of the Moon 2-Asia, 2070, Marburger, J. Exponse address, 44R Robert H. Goddard Marchard Second Second Second Second Second Second Second Second Second NASA, (2020). NASA's Lunar Exploration Program Overview. Retrieved 2021, from NASA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2021, from NaSA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2021, from NaSA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2021, from NaSA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2021, from NaSA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2021, from NaSA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2021, from NaSA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2021, from NaSA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2021, from NaSA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2021, from NaSA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2020, Profile NaSA's Lunar Exploration Program Overview. Retrieved 2021, from NaSA, (2020). NaSA's Lunar Exploration Program Overview. Retrieved 2020, Profile NaSA's https://www.mas.gov/sites/default/files/actoms/files/arcents/plan-2020092.jpdf Neimas, L. & Kröfer, L. Parress, A. Korrield, R. Sellar, G. McGarey, P. – & Weimas, L. & Kröfer, L. Parress, A. Korrield, R. Sellar, G. McGarey, P. – & understanding the history of secondary crusts through the exploration of a lunar mare pti. In 609 IEEE Acrosses Conference (pp. 1-32). IEEE Schrunk, D., Sharpe, B., Cooper, B. L. & Tungavela, M. (2007). The Moon-Schrunk, D., Sharpe, B., Cooper, B. L. & Tungavela, M. (2007). The Moon-Schrunk, D., Schrunk, D.G. (2010). The 5012 International Gemini Lunar Polar Hangavela, M. (2010). Living on the Moon. Encyclopedia of Acrossec Engineering. Thangavela, M. (2010). Living on and Utilisation of the Moon Thangavela, M. (2020). USE: ARTEMIS Project: Maximum Impact Bolinson, M. (2012). USE: ARTEMIS Project: Maximum Impact International Coll. 2012. Distribution, Formation mechanisms, and Significance of lang pits. (Larus, 327, 52-60. Ximmes, S. W., Ellout, J. O., & Bannöva, O. (2012). Defining a missionarchitecure and technologies for lunar lara tube recommisance.


09. Acknowledgements and Contacts


2. Ciara Brown


NASA EXPLORATION SCIENCE FORUM

1. Madhu Thangavelu mthangav@usc.edu

